(1,5 điểm):
Tìm x biết:a) 15x2– 3x = 0;
b) (3x – 2)(x + 3) + (x2– 9) = 0;
c) (x – 1)3– (x + 1)(2 – 3x) = – 3.
Hướng dẫn giải
a) 15x2– 3x = 0
⇔ 3x(5x – 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}3x = 0\\5x - 1 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{1}{5}\end{array} \right.\)
Vậy x = 0, \(x = \frac{1}{5}\).
b) (3x – 2)(x + 3) + (x2– 9) = 0
⇔ (3x – 2)(x + 3) + (x + 3)(x – 3) = 0
⇔ (x + 3)(3x – 2 + x – 3) = 0
⇔ (x + 3)(4x – 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\4x - 5 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = \frac{5}{4}\end{array} \right.\)
Vậy x = – 3; \(x = \frac{5}{4}\).
c) (x – 1)3– (x + 1)(2 – 3x) = – 3
⇔ x3– 3x2+ 3x – 1 + 3x2+ x – 2 + 3 = 0
⇔ x3+ 4x = 0
⇔ x(x2+ 4) = 0
⇔ x = 0 (vì x2+ 4 >0 với mọi x)
Vậy x = 0.
(3 điểm):
Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.a) Chứng minh: Tứ giác ADCP là hình bình hành.
b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3cm. Tính BC và chứng minh FD = FC.
c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.
a) y(12y + 3) + 4(7 – 3y2);
b) (x – 2)2– (3x + 1)(x – 3).
(0,5 điểm):
Tìm giá trị nhỏ nhất của biểu thức A, biết:A = x2+ 5y2– 4xy – 2y + 2x + 2010.
(2 điểm):
Phân tích các đa thức sau thành nhân tử:a) 6x2y – 4x3y;
b) 3(x + y) – x(x + y);
c) x2– 4xy + 4y2– z2;
d) 6x2(x – y) – (1 – x)(y – x).