Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 190

Cho hai phương trình: \[{x^2} - 2mx + 1 = 0\;\] và \[{x^2} - 2x + m = 0\]. Gọi S là tập hợp các giá trị của m để mỗi nghiệm của phương trình này là nghịch đảo của một nghiệm của phương trình kia. Tổng các phần tử của S gần nhất với số nào dưới đây?

A.−1

B.0

C.1

Đáp án chính xác

D.Một đáp số khác

Trả lời:

verified Giải bởi qa.haylamdo.com

Gọi \[{x_1};{x_2}\] là nghiệm của phương trình\[{x^2} - 2mx + 1 = 0\;\] khi đó\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m}\\{{x_1}.{x_2} = 1}\end{array}} \right.\)

Gọi \[{x_3};{x_4}\] là nghiệm của phương trình\[{x^2} - 2x + m = 0\] khi đó \(\left\{ {\begin{array}{*{20}{c}}{{x_3} + {x_4} = 2}\\{{x_3}.{x_4} = m}\end{array}} \right.\)

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = \frac{1}{{{x_3}}}}\\{{x_2} = \frac{1}{{{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{1}{{{x_3}}} + \frac{1}{{{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{{{x_3} + {x_4}}}{{{x_3}.{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2m = \frac{2}{m}}\\{1 = \frac{1}{m}}\end{array}} \right. \Leftrightarrow m = 1\)

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi :

Xem đáp án » 05/07/2022 223

Câu 2:

Cho phương trình :\[{x^2} - 2a\left( {x - 1} \right) - 1 = 0.\] Khi tổng các nghiệm và tổng bình phương các nghiệm của phương trình bằng nhau thì giá trị của tham số aa bằng :

Xem đáp án » 05/07/2022 204

Câu 3:

Phương trình \[\left( {m - 1} \right){x^2} + 3x - 1 = 0\]. Phương trình có nghiệm khi:

Xem đáp án » 05/07/2022 198

Câu 4:

Phương trình \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\]

Xem đáp án » 05/07/2022 154

Câu 5:

Phương trình \[\left( {{m^2} - m} \right)x + m - 3 = 0\]là phương trình bậc nhất khi và chỉ khi

Xem đáp án » 05/07/2022 154

Câu 6:

Cho phương trình \[ax + b = 0\]. Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 149

Câu 7:

Cho phương trình \[a{x^2} + bx + c = 0\] Đặt \(S = - \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau:

Xem đáp án » 05/07/2022 149

Câu 8:

Phương trình \[a{x^2} + bx + c = 0\;\] có nghiệm duy nhất khi và chỉ khi:

Xem đáp án » 05/07/2022 144

Câu 9:

Phương trình \[{x^2} + m = 0\;\] có nghiệm khi và chỉ khi:

Xem đáp án » 05/07/2022 139

Câu 10:

Tìm tất cả các gía trị thực của tham số mm sao cho phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\] có hai nghiệm dương phân biệt.

Xem đáp án » 05/07/2022 133

Câu 11:

Câu nào sau đây sai ?

Xem đáp án » 05/07/2022 132

Câu 12:

Phương trình \[({m^2} - 2m)x = {m^2} - 3m + 2\] có nghiệm khi:

Xem đáp án » 05/07/2022 130

Câu 13:

Để hai đồ thị \[y = - {x^2} - 2x + 3\] và \[y = {x^2} - m\;\] có hai điểm chung thì:

Xem đáp án » 05/07/2022 130

Câu 14:

Cho phương trình \[\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\] .Phương trình có ba nghiệm phân biệt khi:

Xem đáp án » 05/07/2022 129

Câu 15:

Giả sử các phương trình sau đây đều có nghiệm. Nếu biết các nghiệm của phương trình: \[{x^2}\; + px + q = 0\] là lập phương các nghiệm của phương trình \[{x^2} + mx + n = 0.\] Thế thì:

Xem đáp án » 05/07/2022 127

Câu hỏi mới nhất

Xem thêm »
Xem thêm »