ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Phương trình bậc nhất và bậc hai một ẩn
-
424 lượt thi
-
20 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho phương trình \[ax + b = 0\]. Chọn mệnh đề đúng:
- Nếu \[a \ne 0\;\] thì phương trình có nghiệm \[x = - \frac{b}{a}\].
- Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm.
- Nếu a = 0 và \[b \ne 0\] thì phương trình vô nghiệm.
Từ đó C đúng.
Đáp án cần chọn là: C
Câu 2:
Phương trình \[a{x^2} + bx + c = 0\;\] có nghiệm duy nhất khi và chỉ khi:
- TH1: Nếu \[a \ne 0\] thì phương trình có nghiệm duy nhất ⇔Δ=0⇔Δ=0.
- TH2: Nếu a = 0 thì phương trình trở thành \[bx + c = 0\] có nghiệm duy nhất\[ \Leftrightarrow b \ne 0\].
Đáp án cần chọn là: B
Câu 3:
Phương trình \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\]
Ta có: \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \Leftrightarrow \left( {{x^2} - 2x} \right) - \left( {\sqrt 3 x - 2\sqrt 3 } \right) = 0\]
\[ \Leftrightarrow x\left( {x - 2} \right) - \sqrt 3 \left( {x - 2} \right) = 0 \Leftrightarrow \left( {x - 2} \right)\left( {x - \sqrt 3 } \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = \sqrt 3 }\end{array}} \right.\]
Vậy phương trình có hai nghiệm dương phân biệt.
Đáp án cần chọn là: C
Câu 4:
Phương trình \[{x^2} + m = 0\;\] có nghiệm khi và chỉ khi:
Xét \[{x^2} + m = 0\]
Phương trình có nghiệm khi \[{\rm{\Delta }} \ge 0 \Leftrightarrow - 4m \ge 0 \Leftrightarrow m \le 0\]
Đáp án cần chọn là: C
Câu 5:
Cho phương trình \[a{x^2} + bx + c = 0\] Đặt \(S = - \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau:
Đáp án A: Nếu \[P < 0 \Rightarrow ac < 0\] nên phương trình có hai nghiệm trái dấu.
Đáp án B: Ta xét phương trình \[{x^2} + x + 1 = 0\] có \[P = 1 >0,S < 0\] nhưng lại vô nghiệm nên B sai.
Đáp án C, D: Nếu\[{\rm{\Delta }} >0\] thì phương trình có hai nghiệm phân biệt. khi đó S,P lần lượt là tổng và tích hai nghiệm của phương trình. Do đó:
+) Nếu P >0 và S < 0 thì (1) có 2 nghiệm âm phân biệt.
+) Nếu P >0 và S >0 thì (1) có 2 nghiệm dương phân biệt.
Đáp án cần chọn là: B
Câu 6:
Cho phương trình \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi :
Phương trình có hai nghiệm âm phân biệt khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{\Delta >0}\\{S < 0}\\{P >0}\end{array}} \right.\)
Đáp án cần chọn là: C
Câu 7:
Phương trình \[\left( {{m^2} - m} \right)x + m - 3 = 0\]là phương trình bậc nhất khi và chỉ khi
Phương trình \[\left( {{m^2} - m} \right)x + m - 3 = 0\]là phương trình bậc nhất khi và chỉ khi:
\[a = {m^2} - m \ne 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 1}\\{m \ne 0}\end{array}} \right.\]
Đáp án cần chọn là: D
Câu 8:
Câu nào sau đây sai ?
Xét đáp án A : Khi m = 2 phương trình có dạng \[0.x + 0 = 0\]có vô số nghiệm nên A sai.
Xét đáp án B: Khi \[m \ne 1\] thì \[m - 1 \ne 0\] nên phương trình :\[\left( {m - 1} \right)x + 3m + 2 = 0\] có nghiệm duy nhất.
Xét đáp án C: Khi m = 2 thì phương trình là:
\[\frac{{x - 2}}{{x - 2}} + \frac{{x - 3}}{x} = 3 \Leftrightarrow \frac{{x - 3}}{x} = 2 \Rightarrow x - 3 = 2x \Leftrightarrow x = - 3\left( {TM} \right)\] nên C đúng.
Xét đáp án D: Khi\[m \ne 2\]và \[m \ne 0\] thì \[{m^2} - 2m \ne 0\] nên phương trình \[\left( {{m^2} - 2m} \right)x + m + 3 = 0\;\] có nghiệm.
Đáp án cần chọn là: A
Câu 9:
Khẳng định đúng nhất trong các khẳng định sau là :
Đáp án A: Phương trình:\[3x + 5 = 0\] có nghiệm là \[x = - \frac{5}{3}\]nên A đúng.
Phương trình: \[0x - 7 = 0\] vô nghiệm nên B đúng.
Phương trình : \[0x + 0 = 0\] có vô số nghiệm hay có tập nghiệm \(\mathbb{R}\) nên C đúng.
Đáp án cần chọn là: D
Câu 10:
Phương trình: \[(a - 3)x + b = 2\;\] vô nghiệm với giá trị a,ba,b là:
Ta có: \[\left( {a - 3} \right)x + b = 2 \Leftrightarrow \left( {a - 3} \right)x + \left( {b - 2} \right) = 0\]
Phương trình vô nghiệm khi \(\left\{ {\begin{array}{*{20}{c}}{a - 3 = 0}\\{b - 2 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b \ne 2}\end{array}} \right.\)
Đáp án cần chọn là: D
Câu 11:
Phương trình \[({m^2} - 2m)x = {m^2} - 3m + 2\] có nghiệm khi:
Phương trình có nghiệm khi và chỉ khi:
\(\left[ {\begin{array}{*{20}{c}}{{m^2} - 2m \ne 0}\\{{m^2} - 2m = {m^2} - 3m + 2 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne 2}\end{array}} \right.}\\{m = 2}\end{array}} \right. \Leftrightarrow m \ne 0\)
Đáp án cần chọn là: D
Câu 12:
Phương trình \[\left( {{m^2} - 3m + 2} \right)x + {m^2} + 4m + 5 = 0\] có tập nghiệm là \(\mathbb{R}\) khi:
Phương trình có vô số nghiệm khi \(\left\{ {\begin{array}{*{20}{c}}{{m^2} - 3m + 2 = 0}\\{{m^2} + 4m + 5 = 0}\end{array}} \right. \Leftrightarrow m \in \emptyset \)(do phương trình \[{m^2} + 4m + 5 = 0\] vô nghiệm với mọi m
Đáp án cần chọn là: D
Câu 13:
Phương trình \[\left( {m - 1} \right){x^2} + 3x - 1 = 0\]. Phương trình có nghiệm khi:
Với m = 1 ta được phương trình\[3x - 1 = 0 \Leftrightarrow x = \frac{1}{3}\]
Với \[m \ne 1\]
\[{\rm{\Delta }} = {3^2} + 4\left( {m - 1} \right)\]
Phương trình \[\left( {m - 1} \right){x^2} + 3x - 1 = 0\] có nghiệm khi \[{\rm{\Delta }} \ge 0\]\[ \Leftrightarrow {3^2} + 4\left( {m - 1} \right) \ge 0 \Leftrightarrow m \ge - \frac{5}{4}\]
Đáp án cần chọn là: A
Câu 14:
Cho phương trình \[\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\] .Phương trình có ba nghiệm phân biệt khi:
Ta có:\[(x - 1)({x^2} - 4mx - 4) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 4mx - 4 = 0}\end{array}} \right.\]Phương trình có 3 nghiệm phân biệt khi\[{x^2} - 4mx - 4 = 0\] có 2 nghiệm phân biệt khác 1
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{f(1) \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4{m^2} + 4 >0}\\{ - 4m - 3 \ne 0}\end{array}} \right. \Leftrightarrow m \ne - \frac{3}{4}.\)
Đáp án cần chọn là: D
Câu 15:
Để hai đồ thị \[y = - {x^2} - 2x + 3\] và \[y = {x^2} - m\;\] có hai điểm chung thì:
- Xét phương trình \[ - {x^2} - 2x + 3 = {x^2} - m \Leftrightarrow 2{x^2} + 2x - m - 3 = 0\left( 1 \right)\]- Hai đồ thị có hai điểm chung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt
\[ \Leftrightarrow {\rm{\Delta '}} >0 \Leftrightarrow 1 + 2m + 6 >0 \Leftrightarrow m >- \frac{7}{2}\]
Đáp án cần chọn là: C
Câu 16:
Giả sử các phương trình sau đây đều có nghiệm. Nếu biết các nghiệm của phương trình: \[{x^2}\; + px + q = 0\] là lập phương các nghiệm của phương trình \[{x^2} + mx + n = 0.\] Thế thì:
Gọi \[{x_1},{x_2}\] là nghiệm của \[{x^2}\; + px + q = 0\]
Gọi \[{x_3},{x_4}\] là nghiệm của\[{x^2}\; + mx + n = 0\]
- Khi đó, theo vi-et: \[{x_1} + {x_2} = - p,{x_3} + {x_4} = - m,{x_3}.{x_4} = n\]
- Theo yêu cầu ta có:
\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = {x_3}^3}\\{{x_2} = {x_4}^3}\end{array}} \right. \Rightarrow {x_1} + {x_2} = {x_3}^3 + {x_4}^3 \Leftrightarrow {x_1} + {x_2} = {\left( {{x_3} + {x_4}} \right)^3} - 3{x_3}{x_4}\left( {{x_3} + {x_4}} \right)\)
\[ \Rightarrow - p = - {m^3} + 3mn \Rightarrow p = {m^3} - 3mn\]
Đáp án cần chọn là: C
Câu 17:
Cho phương trình :\[{x^2} - 2a\left( {x - 1} \right) - 1 = 0.\] Khi tổng các nghiệm và tổng bình phương các nghiệm của phương trình bằng nhau thì giá trị của tham số aa bằng :
Ta có: \[{x^2} - 2a\left( {x - 1} \right) - 1 = 0 \Leftrightarrow {x^2} - 2ax + 2a - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 2a - 1}\end{array}} \right.\]
(do \[1 + \left( { - 2a} \right) + 2a - 1 = 0\])
Yêu cầu bài toán \[{x_1} + {x_2} = {x_1}^2 + {x_2}^2 \Rightarrow {x_1} + {x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\]
\[ \Rightarrow 2a = 4{a^2} - 4a + 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}{a = 1}\\{a = \frac{1}{2}}\end{array}} \right.\]
Đáp án cần chọn là: A
Câu 18:
Cho hai phương trình: \[{x^2} - 2mx + 1 = 0\;\] và \[{x^2} - 2x + m = 0\]. Gọi S là tập hợp các giá trị của m để mỗi nghiệm của phương trình này là nghịch đảo của một nghiệm của phương trình kia. Tổng các phần tử của S gần nhất với số nào dưới đây?
Gọi \[{x_1};{x_2}\] là nghiệm của phương trình\[{x^2} - 2mx + 1 = 0\;\] khi đó\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m}\\{{x_1}.{x_2} = 1}\end{array}} \right.\)
Gọi \[{x_3};{x_4}\] là nghiệm của phương trình\[{x^2} - 2x + m = 0\] khi đó \(\left\{ {\begin{array}{*{20}{c}}{{x_3} + {x_4} = 2}\\{{x_3}.{x_4} = m}\end{array}} \right.\)
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = \frac{1}{{{x_3}}}}\\{{x_2} = \frac{1}{{{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{1}{{{x_3}}} + \frac{1}{{{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{{{x_3} + {x_4}}}{{{x_3}.{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2m = \frac{2}{m}}\\{1 = \frac{1}{m}}\end{array}} \right. \Leftrightarrow m = 1\)
Đáp án cần chọn là: C
Câu 19:
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số \[f\left( x \right) = \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}}\] lần lượt là M và m thì:
Đặt \[f\left( x \right) = \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = A\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {x^2} + 4x + 5 = A\left( {{x^2} + 3x + 3} \right)}\\{ \Leftrightarrow {x^2} + 4x + 5 - A\left( {{x^2} + 3x + 3} \right) = 0}\\{ \Leftrightarrow {x^2} + 4x + 5 - A{x^2} - 3Ax - 3A = 0}\\{ \Leftrightarrow \left( {1 - A} \right){x^2} + \left( {4 - 3A} \right)x + 5 - 3A = 0\,\,\,\,\left( 1 \right)}\end{array}\]
Phương trình (1) có nghiệm\[ \Leftrightarrow {\rm{\Delta }} \ge 0\]
\[\begin{array}{*{20}{l}}{{\rm{\Delta }} \ge 0 \Leftrightarrow {{\left( {4 - 3A} \right)}^2} - 4.\left( {1 - A} \right)\left( {5 - 3A} \right) \ge 0}\\{\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {4 - 4A} \right)\left( {5 - 3A} \right) \ge 0}\\{\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {20 - 12A - 20A + 12{A^2}} \right) \ge 0}\\{\, \Leftrightarrow 16 - 24A + 9{A^2} - 20 + 12A + 20A - 12{A^2} \ge 0}\\{\, \Leftrightarrow - 3{A^2} + 8A - 4 \ge 0}\\{\, \Leftrightarrow 3{A^2} - 8A + 4 \le 0}\\{\, \Leftrightarrow \left( {A - 2} \right)\left( {3A - 2} \right) \le 0}\\{ \Leftrightarrow \frac{2}{3} \le A \le 2}\end{array}\]
+) \[A \ge \frac{2}{3} \Rightarrow Min\,A = \frac{2}{3}\]
\[A = \frac{2}{3} \Leftrightarrow \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = \frac{2}{3} \Leftrightarrow 3{x^2} + 12x + 15 = 2{x^2} + 6x + 6\]
\[ \Leftrightarrow {x^2} + 6x + 9 = 0 \Leftrightarrow x = - 3\]
+) \[A \le 2 \Rightarrow Max\,A = 2\]
\[A = 2 \Leftrightarrow \frac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = 2 \Leftrightarrow {x^2} + 4x + 5 = 2{x^2} + 6x + 6 \Leftrightarrow {x^2} + 2x + 1 = 0 \Leftrightarrow x = - 1\]
Vậy\[Min\,f\left( x \right) = Min\,A = \frac{2}{3} \Leftrightarrow x = - 1;Max\,f\left( x \right) = Max\,A = 2 \Leftrightarrow x = - 1\]
Khi đó, ta có:\(\left\{ {\begin{array}{*{20}{c}}{M = 2}\\{m = \frac{2}{3}}\end{array}} \right.\)
\[M + m = \frac{8}{3}\]⇒ Đáp án A sai.
\[Mm = \frac{4}{3} \Rightarrow \]Đáp án B sai.
\[\frac{M}{m} = 3 \Rightarrow \]Đáp án C sai.
\[M - m = \frac{4}{3} \Rightarrow \]Đáp ánD đúng.
Đáp án cần chọn là: D
Câu 20:
Tìm tất cả các gía trị thực của tham số mm sao cho phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\] có hai nghiệm dương phân biệt.
Phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\]có hai nghiệm dương phân biệt khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta >0}\\{P >0}\\{S >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,(1)}\\{4{{(m + 1)}^2} - 4(m - 1)(m + 4) >0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\\{\frac{{m + 4}}{{m - 1}} >0\,\,\,\,\,\,\,\,(3)}\\{\frac{{m + 1}}{{m - 1}} >0\,\,\,\,\,\,\,\,(4)}\end{array}} \right.\)
Giải (1):\[m - 1 \ne 0 \Leftrightarrow m \ne 1\]
Giải (2):
\[4{(m + 1)^2} - 4(m - 1)(m + 4) >0\]
\[ \Leftrightarrow (4{m^2} + 8m + 4) - (4m - 4)(m + 4) >0\]
\[ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m + 4m + 16 >0\]
\[ \Leftrightarrow - 4m + 20 >0\]
\[ \Leftrightarrow m < 5\]
Giải (3):
\(\frac{{m + 4}}{{m - 1}} >0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 4}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 4}\\{m < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 4}\end{array}} \right.\)
Giải (4):
\(\frac{{m + 1}}{{m - 1}} >0\, \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 1 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 1}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < 1}\end{array}} \right.}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 1}\end{array}} \right.} \right.\)
Kết hợp cả 4 điều kiện ta được m < −4 hoặc 1 < m < 5.
Đáp án cần chọn là: A
</></></></></></></></>