IMG-LOGO

Câu hỏi:

06/07/2024 125

Tính \[\mathop {\lim }\limits_{x \to 2} \frac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}\] bằng?

A.\(\frac{1}{2}\)

B. \[\frac{9}{8}.\]

Đáp án chính xác

C. 1

D. \[\frac{3}{4}.\]

Trả lời:

verified Giải bởi qa.haylamdo.com

\[\mathop {\lim }\limits_{x \to 2} \frac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}\]

\[ = \mathop {\lim }\limits_{x \to 2} \frac{{(x - \sqrt {x + 2} )(x + \sqrt {x + 2} )(\sqrt {4x + 1} + 3)}}{{(\sqrt {4x + 1} - 3)(\sqrt {4x + 1} + 3)(x + \sqrt {x + 2} )}}\]

\(\)\[\begin{array}{l} = \mathop {\lim }\limits_{x \to 2} \frac{{({x^2} - x - 2)(\sqrt {4x + 1} + 3)}}{{(4x + 1 - 9)(x + \sqrt {x + 2} )}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(x - 2)(\sqrt {4x + 1} + 3)}}{{4(x - 2)(x + \sqrt {x + 2} )}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(\sqrt {4x + 1} + 3)}}{{4(x + \sqrt {x + 2} )}}\\ = \frac{{(2 + 1)(\sqrt {4.2 + 1} + 3)}}{{4(2 + \sqrt {2 + 2} )}} = \frac{9}{8}\end{array}\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính \[\mathop {\lim }\limits_{x \to 2} \sqrt {\frac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \]bằng?

Xem đáp án » 05/07/2022 219

Câu 2:

Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?

Xem đáp án » 05/07/2022 215

Câu 3:

Cho hàm số \[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]. Khẳng định nào sau đây là đúng?

Xem đáp án » 05/07/2022 208

Câu 4:

Tính \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}\]

Xem đáp án » 05/07/2022 201

Câu 5:

Tính \[\mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left| {x - 3} \right|}}{{3x - 9}}\]bằng?

Xem đáp án » 05/07/2022 173

Câu 6:

Cho đa thức f(x) thỏa mãn \[\mathop {\lim }\limits_{x \to 4} \frac{{f\left( x \right) - 2018}}{{x - 4}} = 2019\]Biết \[L = \mathop {lim}\limits_{x \to 4} \frac{{1009[f(x) - 2018]}}{{\left( {\sqrt x - 2} \right)\left[ {\sqrt {2019f(x) + 2019} + 2019} \right]}}\]

Xem đáp án » 05/07/2022 168

Câu 7:

Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\]bằng?

Xem đáp án » 05/07/2022 157

Câu 8:

Tính \[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt[3]{{{x^3} + 1}} + x - 1} \right)\]bằng?

Xem đáp án » 05/07/2022 149

Câu 9:

Tính \[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\]bằng?

Xem đáp án » 05/07/2022 147

Câu 10:

Tính \[\mathop {\lim }\limits_{x \to - 2} \left( {3{x^2} - 3x - 8} \right)\]bằng?

Xem đáp án » 05/07/2022 145

Câu 11:

Trong các mệnh đề sau đâu là mệnh đề đúng?

Xem đáp án » 05/07/2022 145

Câu 12:

Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]

Xem đáp án » 05/07/2022 145

Câu 13:

Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?

Xem đáp án » 05/07/2022 143

Câu 14:

Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{\sqrt {3x} - 3}}\] bằng?

Xem đáp án » 05/07/2022 143

Câu 15:

Cho hàm số f(x) xác định trên \(\mathbb{R}\) thỏa mãn\[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 16}}{{x - 2}} = 12\]. Giới hạn \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {2f(x) - 16} - 4}}{{{x^2} + x - 6}}\] bằng \(\frac{a}{b}\)(phân số tối giản). Tổng \[{a^2} + {b^2}\;\]bằng:

Xem đáp án » 05/07/2022 141

Câu hỏi mới nhất

Xem thêm »
Xem thêm »