Tính đạo hàm của hàm số \[y = f\left( x \right) = {x^\pi }.{\pi ^x}\] tại điểm x=1.
A.\[f'\left( 1 \right) = \pi .\]
B. \[f'\left( 1 \right) = {\pi ^2} + \ln \pi \]
C. \[f'\left( 1 \right) = {\pi ^2} + \pi \ln \pi .\]
D. \[f'\left( 1 \right) = 1\]
Đạo hàm\[f'\left( x \right) = {\left( {{x^\pi }} \right)^\prime }.{\pi ^x} + {x^\pi }.{\left( {{\pi ^x}} \right)^\prime } = \pi .{x^{\pi - 1}}.{\pi ^x} + {x^\pi }.{\pi ^x}.\ln \pi \]
Suy ra \[f'\left( 1 \right) = {\pi ^2} + \pi \ln \pi \]
Đáp án cần chọn là: C
Cho hàm số \[f\left( x \right) = {2^x}{.7^{{x^2}}}\]. Khẳng định nào sau đây là khẳng định sai?
Tìm tất cả các giá trị thực của m để hàm số \[y = {2^{{x^3} - {x^2} + mx + 1}}\] đồng biến trên (1;2)
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Cho a là số thực dương khác 1. Xét hai số thực x1, x2. Phát biểu nào sau đây là đúng?