Đạo hàm hàm số \[y = {\log _{2018}}\left( {2018x + 1} \right)\] là:
A.\[\frac{1}{{x\ln 2018}}\]
B. \[\frac{{2018}}{{2018\left( {x + 1} \right)\ln 2018}}\]
C. \[\frac{1}{{\left( {2018x + 1} \right)\ln 2018}}\]
D.\[\frac{{2018}}{{\left( {2018x + 1} \right)\ln 2018}}\]
Ta có:
\[{\left[ {{{\log }_{2018}}\left( {2018x + 1} \right)} \right]^\prime } = \frac{{{{\left( {2018x + 1} \right)}^\prime }}}{{\left( {2018x + 1} \right)\ln 2018}} = \frac{{2018}}{{\left( {2018x + 1} \right)\ln 2018}}\]
Đáp án cần chọn là: D
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \[y = log\left( {{x^2} - 2mx + 4} \right)\]có tập xác định là R
Cho a,b là các số thực dương, thỏa mãn \[{a^{\frac{3}{4}}} > {a^{\frac{4}{5}}}\] và \[{\log _b}\frac{1}{2} < {\log _b}\frac{2}{3}\]. Mệnh đề nào dưới đây đúng?
Cho hai hàm số \[y = \ln \left| {\frac{{x - 2}}{x}} \right|\]và\(y = \frac{3}{{x - 2}} - \frac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Hàm số \[y = {\log _a}x\]và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng y = 3 cắt hai đồ thị tại các điểm có hoành độ \[{x_1},{x_2}\]. Biết rằng \[{x_2} = 2{x_1},\], giá trị của ab bằng:
Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?
Cho a,b là các số thực, thỏa mãn 0<a<1<b, khẳng định nào sau đây là đúng?
Tìm tham số m để hàm số \[y = \frac{{{{\log }_{\frac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\] đồng biến trên khoảng (0;1).
Tính đạo hàm hàm số \[y = \ln \left( {1 + \sqrt {x + 1} } \right)\]
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
Điểm \[({x_0};{y_0})\;\]thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\] nếu:
Tập xác định của hàm số \[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] là một khoảng có độ dài n/m, với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m−n bằng:
Tìm tập giá trị T của hàm số \[f'\left( x \right) = \frac{{1 - \ln x}}{{{x^2}}}\] với \[x \in [1;{e^2}].\]