Tìm giá trị của a để phương trình \[{(2 + \sqrt 3 )^x} + (1 - a){(2 - \sqrt 3 )^x} - 4 = 0\;\]có 2 nghiệm phân biệt thỏa mãn:\[{x_1} - {x_2} = lo{g_{2 + \sqrt 3 }}3\], ta có a thuộc khoảng:
A.\[(--\infty ;--3)\]
B. \[(--3; + \infty )\]
C. \[(3; + \infty )\]
D. \[(0; + \infty )\]
Ta có \[{\left( {2 + \sqrt 3 } \right)^x}{\left( {2 - \sqrt 3 } \right)^x} = 1 \Rightarrow {\left( {2 - \sqrt 3 } \right)^x} = \frac{1}{{{{\left( {2 + \sqrt 3 } \right)}^x}}}\]
Đặt\[t = {\left( {2 + \sqrt 3 } \right)^x}\left( {t > 0} \right)\] phương trình đã cho trở thành
\[t + \frac{{1 - a}}{t} - 4 = 0 \Leftrightarrow {t^2} - 4t + 1 - a = 0\]
Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta = 3 + a > 0}\\{{t_1} + {t_2} = 4 > 0}\\{{t_1}{t_2} = 1 - a > 0}\end{array}} \right. \Leftrightarrow - 3 < a < 1\)
Ta có
\[{x_1} - {x_2} = {\log _{2 + \sqrt 3 }}3 \Leftrightarrow {\left( {2 + \sqrt 3 } \right)^{{x_1} - {x_2}}} = 3 \Leftrightarrow \frac{{{{\left( {2 + \sqrt 3 } \right)}^{{x_1}}}}}{{{{\left( {2 + \sqrt 3 } \right)}^{{x_2}}}}} = 3 \Leftrightarrow \frac{{{t_1}}}{{{t_2}}} = 3\]
Vì\[{t_1} + {t_2} = 4\] nên điều này xảy ra khi và chỉ khi phương trình (*) có 2 nghiệm t=3 và t=1.Khi đó\[1--a = 3.1 = 3 \Leftrightarrow a = --2\]
Trong 4 đáp án chỉ có B là đúng.
Đáp án cần chọn là: B
Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\]có nghiệm dương?
Cho hàm số y=f(x) có bảng biến thiên như sau
Biết f(0)=76, giá trị lớn nhất của mm để phương trình \[{e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\] có nghiệm trên đoạn \[\left[ {0;2} \right]\;\]là
Tìm nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}.\]
Biết phương trình \[{9^x} - {2^{x + \frac{1}{2}}} = {2^{x + \frac{3}{2}}} - {3^{2x - 1}}\]có nghiệm là a. Tính giá trị của biểu thức \[P = a + \frac{1}{2}lo{g_{\frac{9}{2}}}2\;\].
Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].
Tìm nghiệm của phương trình \[{9^{\sqrt {x - 1} }} = {e^{\ln 81}}\]
Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất \[1 + \left[ {2{x^2} - m\left( {m + 1} \right)x - 2} \right]{.2^{1 + mx - {x^2}}} = \left( {{x^2} - mx - 1} \right){.2^{mx\left( {1 - m} \right)}} + {x^2} - {m^2}x\].
Tìm m để phương trình \[{4^x} - \;{2^{x\; + \;3}} + \;3\; = \;m\;\] có đúng 2 nghiệm \[x \in \left( {1;3} \right)\;\].
Phương trình \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng
Tìm tập nghiệm S của phương trình: \[{4^{x + 1}} + {4^{x - 1}} = 272\]
Tính tổng T tất cả các nghiệm của phương trình\[{4.9^x} - {13.6^x} + {9.4^x} = 0\]