Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 191

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\]có nghiệm dương?

A.1

B.2

Đáp án chính xác

C.4

D.3

Trả lời:

verified Giải bởi qa.haylamdo.com

Ta có\[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\] (1)

\[ \Leftrightarrow {\left( {\frac{4}{3}} \right)^{2x}} - 2.{\left( {\frac{4}{3}} \right)^x} + m - 2 = 0\] chia cả hai vế cho\[{9^x}\]

Đặt\[{\left( {\frac{4}{3}} \right)^x} = t \Rightarrow x = {\log _{\frac{4}{3}}}t > 0 \Leftrightarrow t > 1\]

Khi đó ta có phương trình \[{t^2} - 2t + m - 2 = 0\left( * \right)\]

Để phương trình (1) có nghiệm dương thì phương trình (*) có nghiệm lớn hơn 1.

(*) có nghiệm\[ \Leftrightarrow {\rm{\Delta '}} = 1 - m + 2 \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\]

Với \[m \le 3\] thì (∗) có nghiệm \[{t_1} = 1 - \sqrt {3 - m} ,{t_2} = 1 + \sqrt {3 - m} \]

Để (*) có nghiệm lớn hơn 1 thì

\[1 + \sqrt {3 - m} > 1 \Leftrightarrow \sqrt {3 - m} > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\]

Mà m nguyên dương nên \[m \in \left\{ {1;2} \right\}\]Vậy có 2 giá trị của mm thỏa mãn.

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:

Xem đáp án » 05/07/2022 200

Câu 2:

Cho hàm số y=f(x) có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sauBiết f(0)=76, giá trị lớn nhất của mm để phương trình  (ảnh 1)

Biết f(0)=76, giá trị lớn nhất của mm để phương trình \[{e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\] có nghiệm trên đoạn \[\left[ {0;2} \right]\;\]là

Xem đáp án » 05/07/2022 183

Câu 3:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 05/07/2022 152

Câu 4:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 05/07/2022 142

Câu 5:

Tìm nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}.\]

Xem đáp án » 05/07/2022 141

Câu 6:

Giải phương trình \[{4^x} = {8^{x - 1}}\]

Xem đáp án » 05/07/2022 138

Câu 7:

Biết phương trình \[{9^x} - {2^{x + \frac{1}{2}}} = {2^{x + \frac{3}{2}}} - {3^{2x - 1}}\]có nghiệm là a. Tính giá trị của biểu thức \[P = a + \frac{1}{2}lo{g_{\frac{9}{2}}}2\;\].

Xem đáp án » 05/07/2022 137

Câu 8:

Tìm nghiệm của phương trình \[{9^{\sqrt {x - 1} }} = {e^{\ln 81}}\]

Xem đáp án » 05/07/2022 135

Câu 9:

Tìm giá trị của a để phương trình \[{(2 + \sqrt 3 )^x} + (1 - a){(2 - \sqrt 3 )^x} - 4 = 0\;\]có 2 nghiệm phân biệt thỏa mãn:\[{x_1} - {x_2} = lo{g_{2 + \sqrt 3 }}3\], ta có a thuộc khoảng:

Xem đáp án » 05/07/2022 134

Câu 10:

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Xem đáp án » 05/07/2022 131

Câu 11:

Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất \[1 + \left[ {2{x^2} - m\left( {m + 1} \right)x - 2} \right]{.2^{1 + mx - {x^2}}} = \left( {{x^2} - mx - 1} \right){.2^{mx\left( {1 - m} \right)}} + {x^2} - {m^2}x\].

Xem đáp án » 05/07/2022 128

Câu 12:

Tìm tập nghiệm S của phương trình: \[{4^{x + 1}} + {4^{x - 1}} = 272\]

Xem đáp án » 05/07/2022 127

Câu 13:

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

Xem đáp án » 05/07/2022 127

Câu 14:

Tìm m để phương trình \[{4^x} - \;{2^{x\; + \;3}} + \;3\; = \;m\;\] có đúng 2 nghiệm \[x \in \left( {1;3} \right)\;\].

Xem đáp án » 05/07/2022 125

Câu 15:

Tính tổng T tất cả các nghiệm của phương trình\[{4.9^x} - {13.6^x} + {9.4^x} = 0\] 

Xem đáp án » 05/07/2022 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »