Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 127

Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).

A.\[m < - \frac{1}{3}\]

B.m-13

Đáp án chính xác

C.m>-13

D. m-13

Trả lời:

verified Giải bởi qa.haylamdo.com

Ta có:\[y' = {x^2} - 4mx + 4m\]

Hàm số nghịch biến trên

(vì −2<x<0)

Xét hàm\[g\left( x \right) = \frac{{{x^2}}}{{x - 1}}\]trên (−2;0) ta có:

\[g\prime (x) = \frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \notin ( - 2;0)}\\{x = 2 \notin ( - 2;0)}\end{array}} \right. \Rightarrow g\prime (x) > 0,\forall x \in ( - 2;0)\]

Do đó hàm số y=g(x) đồng biến trên (−2;0)

Suy ra\[g\left( { - 2} \right) < g\left( x \right) < g\left( 0 \right),\forall x \in \left( { - 2;0} \right)\] hay\[ - \frac{4}{3} < g\left( x \right) < 0,\forall x \in \left( { - 2;0} \right)\]

Khi đó \[4m \le g\left( x \right),\forall x \in \left( { - 2;0} \right) \Leftrightarrow 4m \le - \frac{4}{3} \Leftrightarrow m \le - \frac{1}{3}\]Vậy

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 05/07/2022 208

Câu 2:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị  hàm số \[y = f\prime (x)\]như hình sau.

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 1)

Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?

Xem đáp án » 05/07/2022 195

Câu 3:

Cho hàm số y=f(x) có đồ thị như hình bên:

Cho hàm số y=f(x) có đồ thị như hình bên:Hàm số  (ảnh 1)

Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng:

Xem đáp án » 05/07/2022 184

Câu 4:

Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

Xem đáp án » 05/07/2022 142

Câu 5:

Hàm số \[y = - {x^4} - 2{x^2} + 3\] nghịch biến trên:

Xem đáp án » 05/07/2022 142

Câu 6:

Cho hàm số y=f(x) nghịch biến và có đạo hàm trên (−5;5). Khi đó:

Xem đáp án » 05/07/2022 140

Câu 7:

Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:

Xem đáp án » 05/07/2022 137

Câu 8:

Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:

Xem đáp án » 05/07/2022 137

Câu 9:

Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:

Xem đáp án » 05/07/2022 131

Câu 10:

Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?

Cho f(x) mà đồ thị hàm số  (ảnh 1)

Xem đáp án » 05/07/2022 122

Câu 11:

Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?

Xem đáp án » 05/07/2022 120

Câu 12:

Hàm số \[y = {x^3} - 3{{\rm{x}}^2} + 4\] đồng biến trên:

Xem đáp án » 05/07/2022 119

Câu 13:

Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?

Xem đáp án » 05/07/2022 118

Câu 14:

Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]

Xem đáp án » 05/07/2022 116

Câu 15:

Cho hàm số y=f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án » 05/07/2022 115

Câu hỏi mới nhất

Xem thêm »
Xem thêm »