Thứ sáu, 24/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 132

Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?

Cho f(x) mà đồ thị hàm số  (ảnh 1)

A.(1;2)

Đáp án chính xác

B.(−1;0)

C.(0;1)

D.(−2;−1)

Trả lời:

verified Giải bởi qa.haylamdo.com

Ta có:\[y' = f'\left( {x - 1} \right) + 2x - 2 = 0 \Leftrightarrow f'\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\]

Đặt\[t = x - 1\] ta có\[f'\left( t \right) + 2t = 0 \Leftrightarrow f'\left( t \right) - \left( { - 2t} \right) = 0\]

Vẽ đồ thị hàm số \[y = f'\left( t \right)\] và \[y = - 2t\] trên cùng mặt phẳng tọa độ ta có:

Cho f(x) mà đồ thị hàm số  (ảnh 2)

Xét\[y' \ge 0 \Leftrightarrow f'\left( t \right) \ge - 2t \Rightarrow \]  Đồ thị hàm số \[y = f\prime (t)\;\] nằm trên đường thẳng \[y = - 2t\].

Xét \[x \in \left( {1;2} \right) \Rightarrow t \in \left( {0;1} \right) \Rightarrow \] thỏa mãn.

Xét \[x \in \left( { - 1;0} \right) \Rightarrow t \in \left( { - 2; - 1} \right) \Rightarrow \] Không thỏa mãn.

Xét \[x \in \left( {0;1} \right) \Rightarrow t \in \left( { - 1;0} \right) \Rightarrow \] Không thỏa mãn.

Xét \[x \in \left( { - 2; - 1} \right) \Rightarrow t \in \left( { - 3; - 2} \right) \Rightarrow \]  Không thỏa mãn.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 05/07/2022 215

Câu 2:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị  hàm số \[y = f\prime (x)\]như hình sau.

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 1)

Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?

Xem đáp án » 05/07/2022 207

Câu 3:

Cho hàm số y=f(x) có đồ thị như hình bên:

Cho hàm số y=f(x) có đồ thị như hình bên:Hàm số  (ảnh 1)

Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng:

Xem đáp án » 05/07/2022 194

Câu 4:

Hàm số \[y = - {x^4} - 2{x^2} + 3\] nghịch biến trên:

Xem đáp án » 05/07/2022 152

Câu 5:

Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

Xem đáp án » 05/07/2022 151

Câu 6:

Cho hàm số y=f(x) nghịch biến và có đạo hàm trên (−5;5). Khi đó:

Xem đáp án » 05/07/2022 150

Câu 7:

Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:

Xem đáp án » 05/07/2022 146

Câu 8:

Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:

Xem đáp án » 05/07/2022 145

Câu 9:

Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).

Xem đáp án » 05/07/2022 140

Câu 10:

Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:

Xem đáp án » 05/07/2022 137

Câu 11:

Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?

Xem đáp án » 05/07/2022 130

Câu 12:

Hàm số \[y = {x^3} - 3{{\rm{x}}^2} + 4\] đồng biến trên:

Xem đáp án » 05/07/2022 128

Câu 13:

Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?

Xem đáp án » 05/07/2022 126

Câu 14:

Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]

Xem đáp án » 05/07/2022 126

Câu 15:

Cho hàm số y=f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án » 05/07/2022 124

Câu hỏi mới nhất

Xem thêm »
Xem thêm »