Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 196

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị  hàm số \[y = f\prime (x)\]như hình sau.

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 1)

Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?

A. \[\left( {4; + \infty } \right)\]

B.(0;4).

Đáp án chính xác

C. \[\left( { - \infty ; - 2} \right)\]

D.(−2;0).

Trả lời:

verified Giải bởi qa.haylamdo.com

Đặt\[h\left( x \right) = 4f\left( x \right) + {x^2}\]ta có\[h'\left( x \right) = 4f\left( x \right) + 2x = 4\left[ {f'\left( x \right) + \frac{x}{2}} \right]\]

Số nghiệm của phương trình \[h\prime (x) = 0\;\] là số giao điểm của đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\].

Vẽ đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\] trên cùng mặt phẳng tọa độ ta có:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 2)

Dựa vào đồ thị hàm số ta thấy \[h\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0}\\{x = 4}\end{array}} \right.\]

Khi đó ta có BBT hàm số \[y = h(x)\]:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 3)

Khi đó ta suy ra được BBT hàm số \[g\left( x \right) = \left| {h\left( x \right)} \right|\] như sau:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 4)

Dựa vào BBT và các đáp án ta thấy hàm số g(x) đồng biến trên (0;4)

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 05/07/2022 208

Câu 2:

Cho hàm số y=f(x) có đồ thị như hình bên:

Cho hàm số y=f(x) có đồ thị như hình bên:Hàm số  (ảnh 1)

Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng:

Xem đáp án » 05/07/2022 184

Câu 3:

Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

Xem đáp án » 05/07/2022 142

Câu 4:

Hàm số \[y = - {x^4} - 2{x^2} + 3\] nghịch biến trên:

Xem đáp án » 05/07/2022 142

Câu 5:

Cho hàm số y=f(x) nghịch biến và có đạo hàm trên (−5;5). Khi đó:

Xem đáp án » 05/07/2022 140

Câu 6:

Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:

Xem đáp án » 05/07/2022 137

Câu 7:

Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:

Xem đáp án » 05/07/2022 137

Câu 8:

Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:

Xem đáp án » 05/07/2022 131

Câu 9:

Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).

Xem đáp án » 05/07/2022 127

Câu 10:

Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?

Cho f(x) mà đồ thị hàm số  (ảnh 1)

Xem đáp án » 05/07/2022 122

Câu 11:

Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?

Xem đáp án » 05/07/2022 120

Câu 12:

Hàm số \[y = {x^3} - 3{{\rm{x}}^2} + 4\] đồng biến trên:

Xem đáp án » 05/07/2022 119

Câu 13:

Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?

Xem đáp án » 05/07/2022 118

Câu 14:

Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]

Xem đáp án » 05/07/2022 116

Câu 15:

Cho hàm số y=f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án » 05/07/2022 115

Câu hỏi mới nhất

Xem thêm »
Xem thêm »