IMG-LOGO

Câu hỏi:

23/07/2024 135

Một chiếc xe đua F1 đạt tới vận tốc lớn nhất là 360km/h. Đồ thị bên biểu thị vận tốc v của xe trong 5 giây đầu tiên kể từ lúc xuất phát. Đồ thị trong 2 giây đầu là một phần của một parabol định tại gốc tọa độ O, giây tiếp theo là đoạn thẳng và sau đúng ba giây thì xe đạt vận tốc lớn nhất. Biết rằng mỗi đơn vị trục hoành biểu thị 1 giây, mỗi đơn vị trực tung biểu thị 10 m/s và trong 5 giây đầu xe chuyển động theo đường thẳng. Hỏi trong 5 giây đó xe đã đi được quãng đường là bao nhiêu?

A.340 (mét)

B.420 (mét)

C.400 (mét)

D.320 (mét)

Đáp án chính xác

Trả lời:

verified Giải bởi qa.haylamdo.com

Trong 2 giây đầu\[{v_1} = a{t^2}\]  có khi \[t = 2\,\,\left( s \right) \Rightarrow {v_1} = 60\,\,\left( {m/s} \right)\] nên\[60 = a{.2^2} \Leftrightarrow a = 15\] suy ra\[{v_1} = 15{t^2}\]

Quãng đường vật đi được trong 2 giây đầu là\[{s_1} = \mathop \smallint \limits_0^2 {v_1}\left( t \right)dt = \mathop \smallint \limits_0^2 15{t^2}dt = 40\,\,\left( m \right)\]

Trong giây tiếp theo, \[{v_2} = mt + n\]

Ta có\(\left\{ {\begin{array}{*{20}{c}}{t = 2 \Rightarrow v = 60}\\{t = 3 \Rightarrow v = 360km/h = 100m/s}\end{array}} \right.\) nên ta có hệ phương trình\(\left\{ {\begin{array}{*{20}{c}}{2m + n = 60}\\{3m + n = 100}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = 40}\\{n = - 20}\end{array}} \right. \Rightarrow {v_2}\left( t \right) = 40t - 20\)

Quãng đường vật đi được trong giây tiếp theo là

\[{s_2} = \mathop \smallint \limits_2^3 {v_2}\left( t \right)dt = \mathop \smallint \limits_2^3 \left( {40t - 20} \right)dt = 80\,\,\left( m \right)\]

Trong 2 giây cuối\[{v_3} = 100\,\,\left( {m/s} \right)\]

Quãng đường vật đi được trong 2 giây cuối là\[{s_3} = \mathop \smallint \limits_3^5 {v_3}\left( t \right)dt = \mathop \smallint \limits_3^5 100dt = 200\,\,\left( m \right)\]

Vậy trong 5 giây đó xe đã đi được quãng đường là:\[40 + 80 + 200 = 320\,\,\left( m \right)\]Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[F(x) = {x^2}\;\] là một nguyên hàm của hàm số \[f(x){e^{4x}}\], hàm số f(x) có đạo hàm f′(x). Họ nguyên hàm của hàm số \[f\prime \left( x \right){e^{4x}}\] là

Xem đáp án » 05/07/2022 170

Câu 2:

Tìm họ nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2} - 2x + 1}}{{x - 2}}\]

Xem đáp án » 05/07/2022 167

Câu 3:

Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 144

Câu 4:

Mệnh đề nào dưới đây là sai?

Xem đáp án » 05/07/2022 143

Câu 5:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {e^x} + 2\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 05/07/2022 143

Câu 6:

Hàm số nào không là nguyên hàm của hàm số \[y = 3{x^4}\]?

Xem đáp án » 05/07/2022 142

Câu 7:

Cho f(x) là đạo hàm của hàm số F(x). Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 138

Câu 8:

Họ nguyên hàm của hàm số \[y = \frac{{2x + 3}}{{2{x^2} - x - 1}}\] là:

Xem đáp án » 05/07/2022 138

Câu 9:

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu:

Xem đáp án » 05/07/2022 137

Câu 10:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 05/07/2022 136

Câu 11:

Hàm số \[y = sinx\;\] là một nguyên hàm của hàm số nào trong các hàm số sau?

\[{\left( {\sin x} \right)^\prime } = \cos x \Rightarrow y = \sin x\] là một nguyên hàm của hàm số\[y = \cos x\]

Xem đáp án » 05/07/2022 132

Câu 12:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {x^2} + 4\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 05/07/2022 131

Câu 13:

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: f\[\left( 0 \right) = 2\sqrt 2 ,\;f(x) > 0,\forall x \in \mathbb{R}\;\] và \[f(x).f\prime (x) = (2x + 1)\sqrt {1 + {f^2}(x)} ,\forall x \in \mathbb{R}\]. Khi đó giá trị f(1) bằng

Xem đáp án » 05/07/2022 130

Câu 14:

Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 127

Câu 15:

Cho hàm số \[f\left( x \right) = {e^{ - 2018x + 2017}}\]. Gọi F(x) là một nguyên hàm của f(x) mà \[F\left( 1 \right) = e\]. Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 125

Câu hỏi mới nhất

Xem thêm »
Xem thêm »