Cho hàm số \[y = {x^4} - 3{x^2} + m\] có đồ thị là (Cm) (m là tham số thực). Giả sử (Cm) cắt trục Ox tại 4 điểm phân biệt. Gọi \[{S_1},{S_2}\;\] là diện tích của hai hình phẳng nằm dưới trục Ox và S3 là diện tích của hình phẳng nằm trên trục Ox được tạo bởi (Cm) với trục Ox. Biết rằng tồn tại duy nhất giá trị \[m = \frac{a}{b}\] (với \[a,b \in {\mathbb{N}^*}\;\] và tối giản) để \[{S_1} + {S_2} = {S_3}\]. Giá trị của 2a−b bằng:
A.3
B.−4
C.6
D.−2
Xét phương trình hoành độ giao điểm:\[{x^4} - 3{x^2} + m = 0\,\,\,\left( 1 \right)\]
Đặt\[t = {x^2}\,\,\left( {t \ge 0} \right)\] khi đó phương trình (1) trở thành\[{t^2} - 3t + m = 0\,\,\,\left( 2 \right)\]
Vì đồ thị hàm số\[y = {x^4} - 3{x^2} + m\] cắt trục hoành tại 4 điểm phân biệt nên phương trình (1) có 4 nghiệm phân biệt, do đó phương trình (2) phải có 2 nghiệm dương phân biệt.
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta > 0}\\{S > 0}\\{P > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{9 - 4m > 0}\\{3 > 0(luon\,dung)}\\{m > 0}\end{array}} \right. \Leftrightarrow 0 < m < \frac{9}{4}\left( * \right)\)
Giả sử phương trình (2) có 2 nghiệm dương phân biệt\[0 < {t_1} < {t_2}\] áp dụng định lí Vi-ét ta có\(\left\{ {\begin{array}{*{20}{c}}{{t_1} + {t_2} = 3}\\{{t_1}{t_2} = m}\end{array}} \right.\) Khi đó phương trình (1) có 4 nghiệm phân biệt
\[ - \sqrt {{t_2}} < - \sqrt {{t_1}} < \sqrt {{t_1}} < \sqrt {{t_2}} \]
Do tính đối xứng qua trục tung của hàm đa thức bậc bốn trùng phương nên\[{S_1} = {S_2}\] do đó theo bài ra ta có \[{S_1} + {S_2} = {S_3} \Leftrightarrow 2{S_1} = {S_3}\]
Ta có:
\[{S_2} = \mathop \smallint \limits_{\sqrt {{t_1}} }^{\sqrt {{t_2}} } \left| {f\left( x \right)} \right|dx = - \mathop \smallint \limits_{\sqrt {{t_1}} }^{\sqrt {{t_2}} } f\left( x \right)dx\]
\[{S_3} = \mathop \smallint \limits_{ - \sqrt {{t_1}} }^{\sqrt {{t_1}} } \left| {f\left( x \right)} \right|dx = \mathop \smallint \limits_{ - \sqrt {{t_1}} }^{\sqrt {{t_1}} } f\left( x \right)dx = 2\mathop \smallint \limits_0^{\sqrt {{t_1}} } f\left( x \right)dx\] (do f(x) là hàm chẵn).
Ta có:
\(\begin{array}{l}2{S_2} = {S_3}\\ \Leftrightarrow - 2\int\limits_{\sqrt {{t_1}} }^{\sqrt {{t_2}} } {f(x)dx = 2\int\limits_0^{\sqrt {{t_1}} } {f(x)dx} } \\ \Leftrightarrow 2\left( {\int\limits_0^{\sqrt {{t_1}} } {f(x)dx} + \int\limits_{\sqrt {{t_1}} }^{\sqrt {{t_2}} } {f(x)dx} } \right) = 0\\ \Leftrightarrow 2\int\limits_0^{\sqrt {{t_2}} } {f(x)dx} = 0 \Leftrightarrow \int\limits_0^{\sqrt {{t_2}} } {f(x)dx = 0} \\ \Leftrightarrow \int\limits_0^{\sqrt {{t_2}} } {({x^4} - 3{x^2} + m)dx = 0} \\ \Leftrightarrow \left( {\frac{{{x^5}}}{5} - {x^3} + mx} \right)\left| {_0^{\sqrt {{t_2}} }} \right. = 0\\ \Leftrightarrow \frac{{{{\left( {\sqrt {{t_2}} } \right)}^5}}}{5} - {\left( {\sqrt {{t_2}} } \right)^3} + m\sqrt {{t_2}} = 0\\ \Leftrightarrow \sqrt {{t_2}} \left( {\frac{{{t^2}}}{5} - t + m} \right) = 0\\ \Leftrightarrow \frac{{{t_2}^2}}{5} - {t_2} + m = 0\,\,(Do\,\,{t_2} > 0)\,\\ \Leftrightarrow t_2^2 - 5{t_2} + 5m = 0( * )\end{array}\)
Mà \[{t_2}\] là nghiệm của phương trình\[{t^2} - 3t + m = 0\] nên\[t_2^2 - 3{t_2} + m = 0\] và\[{t_2} = \frac{{3 + \sqrt {9 - 4m} }}{2}\]
Do đó
\[\begin{array}{*{20}{l}}{\left( * \right) \Leftrightarrow t_2^2 - 3{t_2} + m - 2{t_2} + 4m = 0}\\{ \Leftrightarrow - 2{t_2} + 4m = 0 \Leftrightarrow {t_2} = 2m}\end{array}\]
\(\begin{array}{l} \Rightarrow \frac{{3 + \sqrt {9 - 4m} }}{2} = 2m\\ \Leftrightarrow 3 + \sqrt {9 - 4m} = 4m\\ \Leftrightarrow \sqrt {9 - 4m} = 4m - 3\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4m - 3 > 0}\\{9 - 4m = 16{m^2} - 24m + 9}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > \frac{3}{4}}\\{16{m^2} - 20m = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > \frac{3}{4}}\\{\left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = \frac{5}{4}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow m = \frac{5}{4}\left( {tm*} \right)\end{array}\)
Vậy \[a = 5,\,\,b = 4 \Rightarrow 2a - b = 10 - 4 = 6.\]
Đáp án cần chọn là: C
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \[y = {x^2} - 4\;\] và \[y = x - 4\]
Cho hai hàm số \[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\left( {m,n,p \in \mathbb{R}} \right)\]và\(g\left( x \right) = {x^2} + 3x - 1\) có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng
Cho parabol \[\left( P \right):y = {x^2} + 1\]và đường thẳng \[(d):y = mx + 2\]. Biết rằng tồn tại m để diện tích hình phẳng giới hạn bới (P) và (d) đạt giá trị nhỏ nhất, tính diện tích nhỏ nhất đó.
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right),y = g\left( x \right)\] và hai đường thẳng \[x = a,x = b(a < b)\;\] là:
Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = {x^3},y = 2 - x\]và y = 0. Mệnh đề nào sau đây là đúng?
Cho hàm số f(x) có đồ thị trên đoạn \[\left[ { - 3;3} \right]\;\]là đường gấp khúc ABCD như hình vẽ.
Tính \[\mathop \smallint \limits_{ - 3}^3 f\left( x \right)dx\]
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), đường thẳng y=0 và hai đường thẳng \[x = a,x = b(a < b)\] là:
Tìm diện tích hình phẳng giới hạn bởi các đường \[y = (x - 1){e^x}\], trục hoành, đường thẳng x=0 và x=1
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right) = {x^2} - 1\], trục hoành và hai đường thẳng x=−1;x=−3 là:
Cho hình vuông ABCD tâm O, độ dài cạnh là 4cm. Đường cong BOC là một phần của parabol đỉnh O chia hình vuông thành hai hình phẳng có diện tích lần lượt là S1 và S2 (tham khảo hình vẽ).
Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng:
Cho hai hàm số \[f(x) = - x\;\] và \[g(x) = {e^x}\]. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \[y = f(x),y = g(x)\;\] và hai đường thẳng x=0,x=e là:
Vòm cửa lớn của một trung tâm văn hóa có hình parabol. Gắn parabol vào hệ trục Oxy thì nó có đỉnh (0;8) và cắt trục hoành tại 2 điểm phân biệt, trong đó có 1 điểm là (−4;0). Người ta dự định lắp vào cửa kính cho vòm cửa này. Hãy tính diện tích mặt kính cần lắp vào.
Diện tích hình phẳng giới hạn bởi nửa đường tròn \[{x^2} + {y^2} = 2,y > 0\] và parabol \[y = {x^2}\;\] bằng:
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \[y = {x^3} - x;y = 2x\] và các đường thẳng \[x = - 1;x = 1\;\] được xác định bởi công thức:
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
Diện tích hai phần A và B lần lượt là \(\frac{{16}}{3}\) và \(\frac{{63}}{4}\). Tính \[\mathop \smallint \limits_{ - 1}^{\frac{3}{2}} f\left( {2x + 1} \right)dx\]