Cho các số phức \[{z_1} = 3i,{z_2} = m - 2i\]. Số giá trị nguyên của m để \[\left| {{z_2}} \right| < \left| {{z_1}} \right|\;\]là
A.2
B.5
C.4
D.3
Ta có\[{z_1} = 3i;{z_2} = m - 2i \Rightarrow \left\{ {\begin{array}{*{20}{c}}{|{z_1}| = 3}\\{|{z_2}| = \sqrt {{m^2} + 4} }\end{array}} \right.\]
Mà
\[\left| {{z_2}} \right| < \left| {{z_1}} \right| \Rightarrow \sqrt {{m^2} + 4} < 3 \Leftrightarrow {m^2} + 4 < 9 \Leftrightarrow - \sqrt 5 < m < \sqrt 5 .\]</>
Mặt khác\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1;2} \right\}.\]
Có 5 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: B
Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]
Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:
Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.
Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]
Tính môđun của số phức \[w = {\left( {1 - i} \right)^2}z\], biết số phức z có môđun bằng m.
Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:
Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)
Gọi M,N lần lượt là các điểm biểu diễn số phức \[z = a + bi\] và \[z\prime = a\prime + b\prime i\]. Chọn câu đúng:
Cho số phức \[z = \frac{{m + 3i}}{{1 - i}},\,\,m \in \mathbb{R}\] Số phức \[w = {z^2}\;\] có \[\left| w \right| = 9\;\] khi các giá trị của m là:
Tính môđun của số phức z biết \[\bar z = \left( {4 - 3i} \right)\left( {1 + i} \right)\]