Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 116

Cho các số phức z và w thỏa mãn \[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\]. Tìm GTLN của \[T = |w + i|\]

A.\[\frac{{\sqrt 2 }}{2}\]

B. \[\frac{{3\sqrt 2 }}{2}\]

Đáp án chính xác

C. 2

D. \(\frac{1}{2}\)

Trả lời:

verified Giải bởi qa.haylamdo.com

Dễ dàng kiểm tra z=0 không thỏa mãn\[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\]

Ta có: \[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i \Leftrightarrow \frac{z}{{w - 1}} = \left( {3 - i} \right)\left| z \right| + i - 1\]

\[ \Leftrightarrow \frac{z}{{w - 1}} = \left( {3\left| z \right| - 1} \right) + \left( {1 - \left| z \right|} \right)i\]

\[ \Rightarrow \left| {\frac{z}{{w - 1}}} \right| = \sqrt {10{{\left| z \right|}^2} - 8\left| z \right| + 2} \Rightarrow \left| {w - 1} \right| = \sqrt {\frac{{{{\left| z \right|}^2}}}{{10{{\left| z \right|}^2} - 8\left| z \right| + 2}}} \]

Nhận xét: \[T = \left| {w + i} \right| \le \left| {w - 1} \right| + \left| {1 + i} \right| = \frac{1}{{\sqrt {\frac{2}{{{{\left| z \right|}^2}}} - \frac{8}{{\left| z \right|}} + 10} }} + \sqrt 2 \]

\[ = \frac{1}{{\sqrt {2{{\left( {\frac{1}{{\left| z \right|}} - 2} \right)}^2} + 2} }} + \sqrt 2 \le \frac{{3\sqrt 2 }}{2}\]

Dấu “=” xảy ra khi và chỉ khỉ

\(\left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{(3 - i)|z| = \frac{z}{{w - 1}} + 1 - i}\end{array}} \right.(k > 0)\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{(3 - i)\frac{1}{2} = \frac{z}{{k(1 + i)}} + 1 - i}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{z = \frac{{1 + i}}{2}.\frac{{2k}}{{1 - i}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{|z| = k(dok > 0)}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2} = k}\\{w - 1 = \frac{1}{2}(1 + i)}\\{z = \frac{{1 + i}}{2}.\frac{{2k}}{{1 - i}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{z = \frac{i}{2}}\\{w = \frac{3}{2} + \frac{1}{2}i}\end{array}} \right.\)

Vậy,\[\max T = \frac{{3\sqrt 2 }}{2}\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]

Xem đáp án » 05/07/2022 214

Câu 2:

Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:

Xem đáp án » 05/07/2022 158

Câu 3:

Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.

Xem đáp án » 05/07/2022 155

Câu 4:

Số phức \[z = a + bi\;\] có phần thực là:

Xem đáp án » 05/07/2022 148

Câu 5:

Số phức liên hợp của số phức \[z = a - bi\] là:

Xem đáp án » 05/07/2022 145

Câu 6:

Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]

Xem đáp án » 05/07/2022 145

Câu 7:

Tính môđun của số phức \[w = {\left( {1 - i} \right)^2}z\], biết số phức z có môđun bằng m.

Xem đáp án » 05/07/2022 145

Câu 8:

Chọn mệnh đề đúng:

Xem đáp án » 05/07/2022 144

Câu 9:

Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)

Xem đáp án » 05/07/2022 142

Câu 10:

Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:

Xem đáp án » 05/07/2022 142

Câu 11:

Cho số phức \[z = 3 - 4i.\] Modun của z bằng

Xem đáp án » 05/07/2022 140

Câu 12:

Gọi M,N lần lượt là các điểm biểu diễn số phức \[z = a + bi\] và \[z\prime = a\prime + b\prime i\]. Chọn câu đúng:

Xem đáp án » 05/07/2022 137

Câu 13:

Hai số phức \[z = a + bi,z' = a + b'i\] bằng nhau nếu:

Xem đáp án » 05/07/2022 136

Câu 14:

Trên C phương trình \[\frac{2}{{z - 1}} = 1 + i\;\] có nghiệm là:

Xem đáp án » 05/07/2022 135

Câu 15:

Cho số phức \[z = \frac{{m + 3i}}{{1 - i}},\,\,m \in \mathbb{R}\] Số phức \[w = {z^2}\;\] có \[\left| w \right| = 9\;\] khi các giá trị của m là:

Xem đáp án » 05/07/2022 135

Câu hỏi mới nhất

Xem thêm »
Xem thêm »