Q =
=
=
Đặt t = => Q = t2 − 4t + 5
= t2 − 4t + 4 + 1 = (t − 2)2 + 1
Vì (t − 2)2 ≥ 0 nên Q = (t − 2)2 + 1 ≥ 1
Do đó giá trị nhỏ nhất của Q bằng 1 khi t = 2. Khi đó:
= 2
=> 2x − 4 = 1
Û x =
Vậy giá trị nhỏ nhất của Q bằng 1 khi x = .
Giải bài toán bằng cách lập phương trình
Một ô tô đi từ A đến B với vận tốc 40 km/h. Lúc về vẫn trên con đường đấy ô tô đi từ B đến A với vận tốc 50 km/h, vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính chiều dài quãng đường AB.Giải các phương trình sau:
a) 3x + 1 = .
b) + = 7.
c) (3x − 5)2 − 2(9x2 − 25) = 0.
d) − = + 1.Cho DABC vuông tại A, đường cao AH.
a) Chứng minh DABC đồng dạng DHBA và AB. AH = BH. AC.
b) Tia phân giác của cắt AH tại I. Biết BH = 3 cm, AB = 5 cm. Tính AI, HI.
c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK // AC.