Tìm giá trị của a để biểu thức ( a2x3 + 3ax2 - 6x - 2a ) chia hết cho ( x + 1 )
Do ( a2x3 + 3ax2 - 6x - 2a ) chia hết cho ( x + 1 ) nên ta có thể viết như sau:
( a2x3 + 3ax2 - 6x - 2a ) = ( mx2 + nx + p )( x + 1 ) ( 1 )
Trong đó thương ( mx2 + nx + p ) là một tam thức bậc ha.
Ta thấy ( 1 ) đúng với mọi giá trị của x, nên cũng đúng với x = - 1
Do đó ta có: - a2 + 3a + 6 - 2a = 0 ⇔ - a2 + a + 6 = 0⇔
Vậy để ( a2x3 + 3ax2 - 6x - 2a ) chia hết cho ( x + 1 ) thì giá trị của a là a =3 hoặc a = -2
Rút gọn biểu thức xn( xn + 1 + yn ) - yn( xn + yn - 1 ) được kết quả là?
Chứng tỏ rằng các biểu thức sau không phụ thuộc vào biến x
a, x( 2x + 1 ) - x2( x + 2 ) + ( x3 - x + 3 )
Thực hiện phép tính ( 5x - 1 )( x + 3 ) - ( x - 2 )( 5x - 4 ) ta có kết quả là ?
Giá trị nhỏ nhất của biểu thức 9x2 - 6x + 5 đạt được khi x bằng ?
Tính giá trị của biểu thức sau A = x6 - 2x4 + x3 + x2 - x, biết x3 - x = 6.
Tính giá trị của các biểu thức sau
a, P = 12x4y2:( - 9xy2 ) tại x = - 3;y = 1,005.