b) = 600
Cho ABC đều, điểm M nằm trong tam giác đó. Qua M, kẻ đường thẳng song song với AC và cắt BC ở E, kẻ đường thẳng song song với AB và cắt AC ở F, kẻ đường thẳng song song với BC và cắt AB ở D. CMR:
a) AFMD, BDME, CEMF là các hình thang cân.
Cho đều. Lấy điểm O nằm trong tam giác. Kẻ OI // AB (I thuộc AC), OM // BC (M thuộc AB), OK // AC (K thuộc BC). Chứng minh rằng: Chu vi bằng tổng khoảng cách từ O đến các đỉnh của
Cho tứ giác ABCD có AD = AB = BC và . CMR:
a) Tia DB là phân giác của góc D.
Hình thang cân ABCD ( AB// CD) , có góc C = 600, DB là tia phân giác của góc D; chu vi hình thang bằng 20cm.
a) Tính các cạnh của hình thangCho hình thang cân ABCD có , đáy nhỏ AD bằng cạnh bên của hình thang. Biết chu vi của hình thang bằng 20cm.
a) Tính các cạnh của hình thang.
Cho tam giác ABC cân tại A, M là điểm bất kì nằm giữa hai điểm A và B. Trên tia đối của tia CA lấy điểm N sao cho CN = BM. Vẽ ME và NF lần lượt vuông góc với đường thẳng BC. Gọi I là giao điểm của MN và BC.
a) Chứng minh: IE = IF.