Cho tứ giác ABCD, vẽ các đường thẳng , song song với AC; cắt AD, DC theo thứ tự tại E và F; cắt AB, BC theo thứ tự tại G và H (G, H khác E, F). Chứng minh rằng EG, DB, HF đồng quy.
Gọi M, O, N lần lượt là giao điểm của EF, AC, GH với BD.
Vì nên (hệ quả định lý Ta-lét) (1).
Vì nên (hệ quả định lý Ta-lét) (2).
Từ (1) và (2) ta có: (*)
Tương tự có: (**)
Từ (*) và (**) có mà suy ra GE, BD, HF đồng quy. Vậy EG, DB, HF đồng quy.
Qua giao điểm O của hai đường chéo tứ giác ABCD, kẻ một đường thẳng tùy ý cắt cạnh AB tại M, CD tại N. Đường thẳng qua M song song với CD cắt AC ở E và đường thẳng qua N song song với AB cắt BD ở F. Chứng minh BE//CF.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, CA. Chứng minh rằng M, N, P, Q thẳng hàng.