Cho tam giác ABC cân tại A, các điểm M, N theo thứ tự di động trên các cạnh AB, AC sao cho AM = CN. Hãy tìm tập hợp trung điểm I của MN
+ Kẻ NP // AB ta có ( 2 góc đồng vị); mà (GT)
Suy ra hay NPC cân
Suy ra NP = NC mà NC = MA nên NP = MA
Mà NP // MA nên tứ giác AMPN là hình bình hành có I là trung điểm MN
Suy ra I là trung điểm AP
+ Kẻ IH và AK cùng vuông góc với BC ta có IH là đường trung bình của APK nên (không đổi)
Vậy tập hợp các trung điểm I của MN khi M, N di động trên AB, AC là đường trung bình của ABC và DE // BC trong đó D là trung điểm cạnh AB, E là trung điểm cạnh ACCho góc vuông xOy và điểm A thuộc tia Ox sao cho OA = 4cm. lấy điểm B tùy ý trên tia Oy và gọi M là trung điểm của AB . Khi B di chuyển trên tia Oy thì M di chuyển trên đường nào
Cho điểm A ở ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. Trên d lấy một điểm B bất kì. Gọi C là điểm đối xứng với điểm A qua điểm B . Hỏi khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào?
Cho ABC có D là trung điểm của AB, kẻ DE // BC . Chứng minh rằng AE = EC.
Cho điểm A nằm ngoài đường thẳng d . Điểm M di chuyển trên đường thẳng d . Gọi B là điểm đối xứng với A qua M. Điểm B di chuyển trên đường nào?