Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD , DA.
1) Chứng minh: EF = GH; EH = GF.
1) Vì E là trung điểm của AB, F là trung điểm của BC
=> EF là đường trung bình của tam giác ABC
=> (1)
Vì H là trung điểm của AD , G là trung điểm của DC
=> HG là đường trung bình của tam giác ADC
=> (2)
Từ (1) và (2)
Chứng minh tương tự ta được EH = GFCho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh: AM = BN.
Cho hình thoi ABCD có . Một góc xBy thay đổi sao cho tia Bx cắt cạnh AD tại M, tia By cắt cạnh CD tại N và . Chứng minh :
1) AB = BD.
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Đường thẳng AH cắt EF tại D , cắt BC tại G . Gọi M và N lần lượt là hình chiếu của G trên AB và AC . Chứng minh rằng tứ giác DNGM là hình thoi.
Cho hình bình hành ABCD. Vẽ tại E, tại F. Biết AE = DF . Chứng minh rằng tứ giác ABCD là hình thoi.
Cho hình bình hành ABCD.Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F
a) Chứng minh E và F đối xứng với nhau qua AB