Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
c) Gọi K là giao điểm của DB và đường tròn (O'). Chứng minh rằng 3 điểm E, C, K thẳng hàng.
c) Ta có:
∠(CKB) = (Góc nội tiếp chắn nửa đường tròn (O')) ⇒ CK ⊥ BD
∠(ADB) = (Góc nội tiếp chắn nửa đường tròn (O)) ⇒ AD ⊥ BD
⇒ CK // AD
Lại có: CE // AD (Tứ giác ADCE là hình thoi)
⇒ C, E, K thẳng hàng
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
d) Chứng minh HK là tiếp tuyến của đường tròn (O')
Phần trắc nghiệm
Nội dung câu hỏi 1
Cho đoạn thẳng OI = 8 cm. Vẽ các đường tròn (O; 10cm); (I; 2cm). Hai đường tròn (O) và (I) có vị trí tương đối như thế nào với nhau?
Cho đường tròn (O;R). Một dây AB của đường tròn có độ dài R . Khoảng cách từ tâm O đến dây AB bằng:
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì ? Vì sao?
Chọn khẳng định sai.
Cho đường tròn (O) đường kính AB. Hai dây AM và BN bằng nhau và nằm khác phía với đường thẳng AB. Khi đó:
Phần tự luận
Nội dung câu hỏi 1
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
a) Hai đường tròn (O) và (O') có vị trí tương đối như thế nào?
Chọn khẳng định đúng.
Cho đường tròn (I) nội tiếp ΔABC. Tâm I của đường tròn này là: