Cho tam giác vuông ABC tại A, đường cao AH. Đường tròn đường kính BH cắt AB tại D, đường tròn đường kính CH cắt AC tại E. Chọn khẳng định sai trong các khẳng định sau
A. DE là cát tuyến của đường tròn đường kính BH
B. DE là tiếp tuyến của đường tròn đường kính BH
C. Tứ giác AEHD là hình chữ nhật
D. DE ⊥ DI (với I là trung điểm BH)
Đáp án A
Gọi I, J lần lượt là trung điểm của BH và CH.
Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay
Vì D, E lần lượt thuộc đường tròn đường kính BH và HC
Nên DE là tiếp tuyến của đường tròn đường kính BH
Từ chứng minh trên suy ra các phương án B, C, D đúng
Cho tam giác cân ABC tại A; đường cao AH và BK cắt nhau tại I. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính AI
Trên tiếp tuyến tại điểm A của đường tròn (O; R) lấy điểm M sao cho OM = 2R. Gọi điểm B của đường tròn (O; R) sao cho MB = MA. Tìm khẳng định sai?
Cho (O;5cm) có dây AB=8cm. Qua O, kẻ đường vuông góc với AB cắt tiếp tuyến tại A của đường tròn tại C. Khẳng định nào sau đây sai?
Cho hình vuông ABCD. Gọi O là tâm đường tròn đi qua 4 điểm A,B, C, D. Tìm khẳng định đúng?
Cho tam giác ABC có AC = 3cm, AB = 4cm, BC = 5cm. Vẽ đường tròn (C; CA). Khẳng định nào sau đây là đúng?
Cho (O; R).Đường thẳng d là tiếp tuyến của đường tròn (O; R) tại tiếp điểm A khi
Cho (O; 5cm). Đường thẳng d là tiếp tuyến của đường tròn (O; 5cm), khi đó
Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Tìm khẳng định đúng
Cho hình vuông ABCD cạnh a, gọi O là tâm đường tròn nội tiếp hình vuông. Tìm khẳng định đúng?