Cho parabol (P): và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:
A. 1
B. 0
C. 3
D. 2
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
5x2 = −4x – 45x2 + 4x + 4 = 0
4x2 + x2 + 4x + 4 = 0
x2 + (x + 2)2 = 0(*)
Xét x2 + (x + 2)2 0; x và dấu “=” xảy ra khi
(vô lý)
nên x2 + (x + 2)2> 0, x
Hay phương trình (*) vô nghiệm
Vậy không có giao điểm của đường thẳng (d) và parabol (P)
Đáp án cần chọn là: B
Cho đồ thị hàm số (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt.
Cho hàm số y = f(x) = (-2m + 1) . Tính giá trị của m để đồ thị đi qua điểm A(-2; 4)
Cho parabol (P): và đường thẳng (d): y = 5x + 4. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 9
Cho hàm số y = f(x) = -2. Tổng các giá trị a của thỏa mãn f(a) = là:
Cho parabol (P):và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)
Cho hàm số y = (m + 1) + 2. Tìm m biết rằng với x = 1 thì y = 5.
Cho đồ thị hàm số(P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt
Cho các hàm số:
(1): y = 3
(2): y = - 4
(3) y = 3x
(4): y = - 4x .
Hỏi có bao nhiều hàm số đồng biến với x < 0?
Cho parabol (P): và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là