Đường thẳng d: y = mx + n và parabol (P): y = a. (a ≠ 0) không cắt nhau phương trình a = m.x + n
A. Hai nghiệm phân biệt
B. Nghiệm kép
C. Vô nghiệm
D. Có hai nghiệm âm
Đường thẳng d và parabol (P) tiếp xúc với nhau khi phương trình a. = m.x + n ↔a. − m.x – n = 0 vô nghiệm (∆< 0)
Đáp án: C
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y = 2mx – 2m + 3 và parabol (P) cắt nhau tại hai điểm phân biệt có tọa độ thỏa mãn
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 5x – m − 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Tìm giá trị của tham số m để đường thẳng d: và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 2mx + 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Tìm tham số m để đường thẳng d: y = 2x – 3m – 1 tiếp xúc với parabol (P):
Tìm tham số m để đường thẳng d: y = 2x + m và parabol (P): không có điểm chung
Tìm tham số m để đường thẳng d: y = mx + 2 cắt parabol (P): tại hai điểm phân biệt
Cho parabol (P): và d: y = 2x + 3. Tìm tọa độ giao điểm A, B của (P) và d:
Cho đường thẳng d: y = −3x + 1 và parabol (P): (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
Tìm tham số m để đường thẳng d: cắt parabol (P): tại hai điểm phân biệt
Tìm m để parabol (P): cắt đường thẳng d: y = (m – 1) x + – 16 tại hai điểm phân biệt nằm bên trái trục tung.
Tìm tham số m để đường thẳng d: y = (m – 2)x + 3m và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung
Cho parabol (P): và d: y = 4x + 5. Tìm tọa độ giao điểm A, B của (P) và d: