Cho parabol (P): (a 0) đi qua điểm A (−2; 4) và tiếp xúc với đồ thị (d) của hàm số y = 2 (m – 1)x – (m – 1). Tọa độ tiếp điểm là:
A. (0; 0)
B. (1; 1)
C. A và B đúng
D. Đáp án khác
(P) đi qua điểm A (−2; 4) nên 4 = a. = 4a a = 1
Vậy phương trình parabol (P) là .
Để (P) tiếp xúc với (d) thì phương trình hoành độ giao điểm
= 2 (m – 1)x – (m – 1)có nghiệm kép
↔ – 2m + 1 − m + 1 = 0 ↔ – 3m + 2 = 0 ↔ m=1 hoặc m=2
Nếu m = 1 thì hoành độ giao điểm là x = 0. Vậy tiếp điểm là (0; 0)
Nếu m = 2 thì hoành độ giao điểm là x = 1. Vậy tiếp điểm là (1; 1)
Đáp án: C
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y = 2mx – 2m + 3 và parabol (P) cắt nhau tại hai điểm phân biệt có tọa độ thỏa mãn
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 5x – m − 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
Tìm giá trị của tham số m để đường thẳng d: và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 2mx + 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Tìm tham số m để đường thẳng d: y = 2x – 3m – 1 tiếp xúc với parabol (P):
Tìm tham số m để đường thẳng d: y = 2x + m và parabol (P): không có điểm chung
Tìm tham số m để đường thẳng d: y = mx + 2 cắt parabol (P): tại hai điểm phân biệt
Cho parabol (P): và d: y = 2x + 3. Tìm tọa độ giao điểm A, B của (P) và d:
Tìm tham số m để đường thẳng d: cắt parabol (P): tại hai điểm phân biệt
Cho đường thẳng d: y = −3x + 1 và parabol (P): (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
Tìm m để parabol (P): cắt đường thẳng d: y = (m – 1) x + – 16 tại hai điểm phân biệt nằm bên trái trục tung.
Tìm tham số m để đường thẳng d: y = (m – 2)x + 3m và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung
Cho parabol (P): và đường thẳng d: . Tìm m để d cắt (P) tại hai điểm phân biệt nằm về bên phải trục tung.