Phương trình |2x – 5| = 3 có nghiệm là:
A. x = 4; x = -1
B. x = -4; x = 1
C. x = 4; x = 1
D. x = -4; x = -1
|2x – 5| = 3
TH1: |2x – 5| = 2x – 5 khi 2x – 5 ≥ 0 ó 2x ≥ 5 ó x ≥ 5/2
Khi đó |2x – 5| = 3
=> 2x – 5 = 3 ó 2x = 8 ó x = 4 (TM)
TH2: |2x – 5| = - (2x – 5) khi 2x – 5 < 0 ó 2x < 5 ó x < 5/2
Khi đó |2x – 5| = 3
ð - (2x – 5) = 3 ó 2x = 2 ó x = 1 (TM)
Vậy phương trình có nghiệm là x = 4; x = 1
Đáp án cần chọn là: C
Cho hai phương trình 4|2x – 1| + 3 = 15 (1) và |7x + 1| - |5x + 6| = 0 (2). Kết luận nào sau đây là đúng.
Cho các khẳng định sau:
(1) Phương trình |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) Phương trình |x – 1| = 0 có 2 nghiệm phân biệt
(3) Phương trình |x – 3| = 1 có hai nghiệm phân biệt là x = 2 và x = 4
Số khẳng định đúng là:
Cho các khẳng định sau:
(1) |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) x = 4 là nghiệm của phương trình |x – 3| = 1
(3) |x – 3| = 1 có hai nghiệm là x = 2 và x = 4
Các khẳng định đúng là:
Cho hai phương trình 4|2x – 1| + 3 = 15 (1) và |7x + 1| - |5x + 6| = 0 (2). Kết luận nào sau đây là sai.
Số nguyên dương nhỏ nhất thỏa mãn bất phương trình |-x + 2| + 5 ≥ x – 2 là