Chọn câu sai.
A. (-b – a)3 = -a3 – 3ab(a + b) – b3
B. (c – d)3 = c3 – d3 + 3cd(d – c)
C. (y – 2)3 = y3 – 8 – 6y(y + 2)
D. (y – 1)3 = y3 – 1- 3y(y – 1)
Ta có
(-b – a)3 = [-(a + b)3] = -(a + b)3 = -(a3 + 3a2b + 3ab2 + b3) = -a3 - 3a2b - 3ab2 - b3 = -a3 – 3ab(a + b) – b3
nên A đúng
+ Xét (c – d)3 = c3 – 3c2d + 3cd2 + d3 = c3 – d3 + 3cd(d – c)
nên B đúng
+ Xét (y – 1)3 = y3 – 3y2.1 + 3y.12 – 13 = y3 – 1 – 3y(y – 1)
nên D đúng
+ Xét
(y – 2)3 = y3 – 3y2.2 +3y.22 – 23 = y3 – 6y2 + 12y – 8 = y3 – 8 – 6y(y – 2) ≠ y3 – 8 – 6y(y + 2)
nên C sai
Đáp án cần chọn là: C
Chọn câu đúng. (x – 2y)3 bằng
Cho 2x – y = 9. Giá trị của biểu thức A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11 bằng
Cho a + b + c = 0. Giá trị của biểu thức B = a3 + b3 + c3 – 3abc bằng
Viết biểu thức x3 + 12x2 + 48x + 64 dưới dạng lập phương của một tổng
Cho (a + b + c)2 + 12 = 4(a + b + c) + 2(ab + bc + ca). Khi đó
Chọn câu đúng.
Viết biểu thức (x – 3y)(x2 + 3xy + 9y2) dưới dạng hiệu hai lập phương
Cho biểu thức A = x3 – 3x2 + 3x. Tính giá trị của A khi x = 1001
Viết biểu thức y2+6y24-3y+36 dưới dạng tổng hai lập phương
Tìm x biết x3 + 3x2 + 3x + 1 = 0
Cho M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1) và N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x.
Chọn câu đúng
Viết biểu thức (x2 + 3)(x4 – 3x2 + 9) dưới dạng tổng hai lập phương
Cho x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 14. Chọn câu đúng.
3) Tính số đo các góc của ΔDMN.
2) Chứng minh: ΔAMD=ΔBND.
Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh: AM = BN.
3) Tổng độ dài (DM + DN) không đổi.
Cho hình thoi ABCD có A^=60°. Một góc xBy thay đổi sao cho tia Bx cắt cạnh AD tại M, tia By cắt cạnh CD tại N và xBy^=60°. Chứng minh :
1) AB = BD.
2) Gọi O là giao điểm của AC và BD. Chứng minh: OA2=34AB2.
Cho hình thoi ABCD có AB = BD.
1) Chứng minh: Tam giác ABD đều.