Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu đúng.
A. MP = QN
B. AC ⊥ BD
C. AB = AD
D. AC = BD
+ Xét tam giác ABC có MN là đường trung bình nên MN // AC; MN = AC (1)
Tương tự ta có PQ là đường trung bình tam giác ADC nên PQ // AC; PQ = AC (2)
Từ (1) và (2) suy ra MN // PQ; MN = PQ => MNPQ là hình bình hành
Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ
Mà MN = AC (cmt); MQ = BD (do MQ là đường trung bình tam giác ABD)
Suy ra AC = BD
Vậy để hình bình hành MNPQ là hình thoi thì AC = BD
Đáp án cần chọn là: D
Cho hình thoi có độ dài hai đường chéo là 12cm và 16cm. Tính độ dài cạnh hình thoi.
Cho hình bình hành ABCD. Gọi E, F là trung điểm của các cạnh AD và BC. Các đường BE, DE cắt các đường chéo AC tại P và Q. Tứ giác EPFQ là hình thoi nếu góc ACD bằng:
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Tứ giác AGCH là hình gì?
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Tứ giác AMBM’ là hình gì?
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD phải có điều kiện gì thì EFGH là hình thoi?
Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đôi cạnh đó. Tính các góc của hình thoi.
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Cho BC = 4cm. Tính chu vi tứ giác AMBM’.
Cho hình thoi có độ dài hai đường chéo là 24cm và 10cm. Tính độ dài cạnh hình thoi.
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Cho OC = 4; OH = 3. Tính chu vi tứ giác AHCG.