Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Tứ giác AMBM’ là hình gì?
A. Hình thoi
B. Hình chữ nhật
C. Hình bình hành
D. Hình thang
Vì M’ đối xứng M qua D nên DM = DM’ (1)
M, D lần lượt là trung điểm của BC, AB nên MD là đường trung bình của ΔABC.
Suy ra MD // AC (2)
Mặt khác ΔABC vuông ở A nên AB ⊥ AC (2)
Từ (1) và (2) suy ra DM ⊥ AB => MM’ ⊥ AB.
Vì D là trung điểm của AB (gt) và D là trung điểm của MM’ nên tứ giác AMBM’ là hình bình hành. Mặt khác MM’ ⊥ AB nên AMBM’ là hình thoi.
Đáp án cần chọn là: A
Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu đúng.
Cho hình thoi có độ dài hai đường chéo là 12cm và 16cm. Tính độ dài cạnh hình thoi.
Cho hình bình hành ABCD. Gọi E, F là trung điểm của các cạnh AD và BC. Các đường BE, DE cắt các đường chéo AC tại P và Q. Tứ giác EPFQ là hình thoi nếu góc ACD bằng:
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Tứ giác AGCH là hình gì?
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD phải có điều kiện gì thì EFGH là hình thoi?
Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đôi cạnh đó. Tính các góc của hình thoi.
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Cho BC = 4cm. Tính chu vi tứ giác AMBM’.
Cho hình thoi có độ dài hai đường chéo là 24cm và 10cm. Tính độ dài cạnh hình thoi.
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Cho OC = 4; OH = 3. Tính chu vi tứ giác AHCG.