a) x2– 8x;
b) x2– xy – 6x + 6y;
c) x2– 6x + 9 – y2;
d) x3+ y3+ 2x + 2y.
Hướng dẫn giải
a) x2– 8x = x(x – 8)
b) x2– xy – 6x + 6y
= x(x – 6) – y(x – 6)
= (x – 6)(x – y)
c) x2– 6x + 9 – y2
= (x2– 6x + 9) – y2
= (x – 3)2– y2
= (x – 3 – y)(x – 3 + y)
d) x3+ y3+ 2x + 2y
= (x3+ y3) + 2(x + y)
= (x + y)(x2– xy + y2) + 2(x + y)
= (x + y)(x2– xy + y2+ 2)
Cho ∆ABC có E là trung điểm của AC. Qua E kẻ ED//AB (D ∈ BC);
EF//BC (F ∈ AB)
a) Chứng minh tứ giác BDEF là hình bình hành và D là trung điểm của đoạn thẳng BC.
b) Gọi H là điểm đối xứng của D qua F. CHứng minh rằng HB//AD.
c) Gọi I là trung điểm của HB; K là giao điểm của AD và EF. Chứng minh rằng I, K, E thẳng hàng.
d) ∆ABC cần thêm điều kiện gì để \(HF = \frac{{AB}}{2}\).
A = x2– x + 5 và B = (x – 1)(x + 2) – x(x – 2) – 3x
a) Tính giá trị biểu thức A khi x = 2;
b) Chứng tỏ B = – 2 với mọi giá trị của biến x;
c) Tìm giá trị nhỏ nhất của biểu thức C = A + B.
a) (2x – 3)2– 49 = 0
b) 2x(x – 5) – 7(5 – x) = 0
c) x2– 3x – 10 = 0