Cho tam giác ABC. Một đường tròn tâm O nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chọn đáp án đúng nhất
A.
B.
C. A, E, F thẳng hàng
D. Cả A, B, C đều đúng
Đáp án D
Theo đề ra có A, O, I thẳng hàng (vì O, I cùng nằm trên tia phân giác góc A)
+ Gọi M, N là tiếp điển của (O); (I) với AB, ta có OM // IN nên (hệ quả của định lý Ta-lét)
Mà OM = OE, IN – IF nên ta có
Mặt khác ED BC, IF BC OD // IF
+ Xét OAE và IAF có ; do đó OAE IAF
Vậy A, E, F thẳng hàng
Cho đường tròn (O; R), đường kính AB cố định và dây AC. Biết rằng khoảng cách từ O lần lượt đến AC và BC là 8cm và 6cm. Lấy D đối xứng với A qua C. Chọn câu sai?
Cho đường tròn (O; R) đường kính AB. CD là dây cung của (O), , CD cắt AB tại M (D nằm giữa C và M) và OM = 2R. Tính độ dài các đoạn thẳng MD, MC theo R
Tam giác đều có cạnh 8cm thì bán kính đường tròn nội tiếp tam giác là?
Cho tam giác ABC nội tiếp đường tròn (O; R), AH là đường cao (H BC). Chọn câu đúng
Cho nửa đường tròn (O) có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Qua một điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By theo thứ tự ở C và D. Gọi N = AD BC, H = MN AB. Chọn câu đúng nhất
Cho tam giác nhọn ABC. Gọi O là trung điểm của BC. Dựng đường tròn tâm O đường kính BC. Vẽ đường cao AD của tam giác ABC và các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Gọi E là giao điểm của MN với AD. Chọn câu đúng
Cho đường tròn (O; r) nội tiếp tam giác ABC tiếp xúc với BC tại D. Vẽ đường kính DE; kéo dài AE cắt BC tại M. chọn câu đúng nhất
Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Tìm vị trí điểm M để tứ giác ABDC có chu vi nhỏ nhất
Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Tìm vị trí điểm C và D để hình thang ABDC có chu vi bằng 14, biết AB = 4cm
Cho tam giác ABC nội tiếp đường tròn (O; R) có AB = 5cm, AC = 12cm và đường cao AH = 3cm (H nằm ngoài BC), khi đó R bằng?
Hai tiếp tuyến tại A và B của đường tròn (O; R) cắt nhau tại M. Nếu thì góc ở tâm bằng:
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B (O) và C (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I. Tính độ dài BC biết OA = 9cm, O’A = 4cm
Cho đường tròn (O; R), AC và BD là hai đường kính. Xác định vị trí của hai đường kính AC và BD để diện tích tứ giác ABCD lớn nhất
Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với BC, AB, AC lần lượt ở D, E, F. Đường thẳng qua E song song với BC cắt AD, DF lần lượt ở M, N. Khi đó M là trung điểm của đoạn thẳng