Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Khi đó DA. DE bằng
A. DC2
B. DB2
C. DB. DC
D. AB.AC
Xét (O) có (hai góc nội tiếp chắn hai cung bằng nhau AB = AC)
Xét ADC và BDE có (đối đỉnh) và (cmt)
Nên ADC đồng dạng với BDE (g − g)
=> => DA. DE = DB. DC
Đáp án cần chọn là: C
Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Khi đó AB2 bằng
Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Số đo góc là:
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D) sao cho = 120o. Chọn câu đúng
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Cặp góc nào sau đây bằng nhau?
Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Hai đoạn thẳng nào sau đây bằng nhau?
Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Số đo là:
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D) sao cho = 120o. Hai tam giác nào sau đây đồng dạng?
Cho tam giác ABC có đường cao AH và nội tiếp trong đường tròn tâm (O), đường kính AD. Khi đó tích AB.AC bằng
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Tích IA. IB bằng?