Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

21/07/2024 86

Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)

1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).

3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.

Trả lời:

verified Giải bởi qa.haylamdo.com

 Media VietJack

1) Ta có \(\widehat {AIM} = \widehat {AKM} = 90^\circ \left( {gt} \right)\), suy ra tứ giác AIMK nội tiếp đường tròn đường kính AM.

Nhận xét: Bài toán chứng minh tứ giác nội tiếp bằng cách chứng minh hai đỉnh cùng nhìn cạnh đối diện dưới góc \(90^\circ \).

2) Tứ giác CPMK có \(\widehat {MPC} = \widehat {MKC} = 90^\circ \) (gt). Do đó CPMK là tứ giác nội tiếp \( \Rightarrow \widehat {MPK} = \widehat {MCK}\)(1). Vì KC là tiếp tuyến của \(\left( O \right)\) nên ta có: \(\widehat {MCK} = \widehat {MBC}\) (cùng chắn ) (2).

Từ (l), (2) \( \Rightarrow \widehat {MPK} = \widehat {MBC}\) (3).

Nhận xét: Bài toán chứng minh hai góc bằng nhau bằng cách sử dụng tính chất bắc cầu.         

3) Chứng minh tương tự câu b ta có BPMI là tứ giác nội tiếp.

Suy ra: \(\widehat {MIP} = \widehat {MBP}\) (4). Từ (3) (4) \( \Rightarrow \widehat {MPK} = \widehat {MIP}\)

Tương tự ta chứng minh được \(\widehat {MKP} = \widehat {MPI}\).

Suy ra: \(\Delta MPK\) đồng dạng với \(\Delta MIP\)

\( \Rightarrow \frac{{MP}}{{MK}} = \frac{{MI}}{{MP}} \Rightarrow MI.MK = M{P^2} \Rightarrow MI.MK.MP = M{P^3}\)

Do đó \(MI.MK.MP\) lớn nhất khi và chỉ khi MP lớn nhất.

Gọi H là hình chiếu của O trên BC, suy ra OH là hằng số (do BC cố định).

Lại có: \(MP + OH \le OM = R \Rightarrow MP \le R - OH\). Do đó MP lớn nhất bằng \(R - OH\) khi và chỉ khi \(O,H,M\) thẳng hàng hay M nằm chính giữa cung nhỏ BC.

Suy ra \(max\,MI.MK.MP = {\left( {R - OH} \right)^3} \Leftrightarrow M\) nằm chính giữa cung nhỏ BC.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\).

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?

3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?

Xem đáp án » 29/06/2022 106

Câu 2:

Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?

Xem đáp án » 29/06/2022 80

Câu 3:

1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)

2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5}  = 2x - 2\).

3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?

Xem đáp án » 29/06/2022 77

Câu 4:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?

2) Cho hàm số \(y = mx + 1\) (1)

a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?

b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).

Xem đáp án » 29/06/2022 75