Tìm các giá trị của tham số m để phương trình \[2{x^2} - 2x + 1 - m = 0\;\]có hai nghiệm phân biệt
A.\[m >\frac{1}{2}\]
B. \[m = \frac{1}{2}\]
C. \[m < \frac{1}{2}\]
D. Không tồn tại
\[2{x^2} - 2x + 1 - m = 0 \Leftrightarrow 2{x^2} - 2x = m - 1\]
Số nghiệm của phương trình đã cho bằng số giao điểm của Parabol
\[\left( P \right):\,\,y = 2{x^2} - 2x\] và đường thẳng \[y = m - 1\]có tính chất song song với trục hoành.
Parabol (P) có tọa độ đỉnh \[\left( { - \frac{b}{{2a}}; - \frac{{\rm{\Delta }}}{{4a}}} \right) = \left( {\frac{1}{2}; - \frac{1}{2}} \right)\]
Dựa trên đồ thị ta thấy phương trình đã cho có hai nghiệm khi và chỉ khi
\[m - 1 >- \frac{1}{2} \Leftrightarrow m >\frac{1}{2}\]
Đáp án cần chọn là: A
Tìm các giá trị thực của tham số m để phương trình \[\left| {{x^2} - 3x + 2} \right| = m\;\] có bốn nghiệm thực phân biệt.
Tìm các giá trị của tham số mm để phương trình \[{x^2} - 2(m + 1)x + 1 = 0\;\] có hai nghiệm phân biệt trong đó có đúng một nghiệm thuộc khoảng (0;1).
Tìm các giá trị của m để hàm số \[y = {x^2} + mx + 5\;\] luôn đồng biến trên \[\left( {1; + \infty } \right)\]
Tìm các giá trị của tham số m để phương trình \[\frac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}\] có 3 nghiệm thực phân biệt.
Tìm giá trị của m để hàm số \[y = - {x^2} + 2x + m - 5\] đạt giá trị lớn nhất bằng 6
Cho đồ thị hàm số \[y = a{x^2} + bx + c\] như hình vẽ.
Khẳng định nào sau đây là đúng:
Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = −\(\frac{3}{2}\).
Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).
Tìm giá trị nhỏ nhất của biểu thức \[P = 3\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} \right) - 8\left( {\frac{a}{b} + \frac{b}{a}} \right)\].
Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).
Tìm các giá trị của tham số m để \[2{x^2} - 2(m + 1)x + {m^2} - 2m + 4 \ge 0(\forall x)\]
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A(0;2),B(−2;5),C(3;8)
Một cái cổng hình parabol có dạng \[y = - \frac{1}{2}{x^2}\;\] có chiều rộng d = 4m.
Tính chiều cao h của cổng (xem hình minh họa)
Tìm các giá trị của m để phương trình \[{x^2} - 2x + \sqrt {4{x^2} - 12x + 9} = m\] có nghiệm duy nhất.
Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.