Tập nghiệm của phương trình \[\tan x.\cot x = 1\] là:
A.\[R \setminus \left\{ {\frac{{k\pi }}{2},k \in Z} \right\}\]
B. \[R \setminus \left\{ {\frac{\pi }{2} + k\pi ,k \in Z} \right\}\]
C. R
D. \[R \setminus \left\{ {k\pi ,k \in Z} \right\}\]
Điều kiện xác định:
\(\left\{ {\begin{array}{*{20}{c}}{cosx \ne 0}\\{sinx \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne \frac{\pi }{2} + k\pi }\\{x \ne k\pi }\end{array}} \right. \Leftrightarrow x \ne \frac{{k\pi }}{2} \Rightarrow D = R \setminus \{ \frac{{k\pi }}{2},k \in Z\} \)
Do\[\tan x.\cot x = 1,\forall x \in D\]nên tập nghiệm của phương trình là \[R \setminus \left\{ {\frac{{k\pi }}{2},k \in Z} \right\}\]
Đáp án cần chọn là: A
Phương trình lượng giác \[\frac{{\cos x - \frac{{\sqrt 3 }}{2}}}{{\sin x - \frac{1}{2}}} = 0\] có nghiệm là:
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là:
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Phương trình \[\cos 3x = 2{m^2} - 3m + 1\]. Xác định mm để phương trình có nghiệm \[x \in (0;\frac{\pi }{6}]\]
Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Giải phương trình lượng giác \[\sin \left( {\frac{\pi }{3} - 3x} \right) = \sin \left( {x + \frac{\pi }{4}} \right)\] có nghiệm là:
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Số nghiệm của phương trình \[\cos 2x = \frac{1}{2}\] trên nửa khoảng \[({0^0};{36^0}]\;\]là?
Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là: