Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
A.980
B.51
C.981
D.1000
Ta có: \[\cot 20x = 1 \Leftrightarrow 20x = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{80}} + \frac{{k\pi }}{{20}}\,\,\left( {k \in \mathbb{Z}} \right)\]
Theo bài ra ta có:
\[\begin{array}{*{20}{l}}{x \in \left[ { - 50\pi ;0} \right]}\\{ \Leftrightarrow - 50\pi \le \frac{\pi }{{80}} + \frac{{k\pi }}{{20}} \le 0}\\{ \Leftrightarrow - 50 \le \frac{1}{{80}} + \frac{k}{{20}} \le 0}\\{ \Leftrightarrow - \frac{{4001}}{4} \le k \le - \frac{1}{4}}\\{ \Leftrightarrow - 1000,25 \le k \le - 0,25}\end{array}\]
Mà\[k \in \mathbb{Z} \Rightarrow - 1000 \le k \le - 1\]
\[ \Rightarrow k \in \left\{ { - 1000; - 999;....; - 2; - 1} \right\}\]
Tập trên có \[ - 1 - ( - 1000) + 1 = 1000\]phần tử suy ra có 1000 giá trị nguyên của kk thỏa mãn.
Vậy phương trình đã cho có 1000 nghiệm thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Phương trình lượng giác \[\frac{{\cos x - \frac{{\sqrt 3 }}{2}}}{{\sin x - \frac{1}{2}}} = 0\] có nghiệm là:
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là:
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Phương trình \[\cos 3x = 2{m^2} - 3m + 1\]. Xác định mm để phương trình có nghiệm \[x \in (0;\frac{\pi }{6}]\]
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Giải phương trình lượng giác \[\sin \left( {\frac{\pi }{3} - 3x} \right) = \sin \left( {x + \frac{\pi }{4}} \right)\] có nghiệm là:
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Số nghiệm của phương trình \[\cos 2x = \frac{1}{2}\] trên nửa khoảng \[({0^0};{36^0}]\;\]là?
Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là: