Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
A.\[\left| a \right| \ge 1\]
B. \[\left| a \right| >1\]
C. \[\left| a \right| = 1\]
D. \[\left| a \right| \ne 1\]
\(\left\{ {\begin{array}{*{20}{c}}{1 - ta{n^2}x \ne 0}\\{cos2x \ne 0}\\{cosx \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{co{s^2}x - si{n^2}x}}{{co{s^2}x}}}\\{cos2x \ne 0}\\{cosx \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{cos2x \ne 0}\\{cosx \ne 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x \ne \frac{\pi }{2} + k\pi }\\{x \ne \frac{\pi }{2} + k\pi }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}}\\{x \ne \frac{\pi }{2} + k\pi }\end{array}} \right.(k \in Z)\)
\[\frac{{{a^2}}}{{1 - ta{n^2}x}} = \frac{{si{n^2}x + {a^2} - 2}}{{cos2x}}\]
\( \Leftrightarrow \frac{{{a^2}}}{{\frac{{co{s^2}x - si{n^2}x}}{{co{s^2}x}}}} = \frac{{si{n^2}x + {a^2} - 2}}{{cos2x}}\)
\( \Leftrightarrow \frac{{{a^2}co{s^2}x}}{{cos2x}} = \frac{{si{n^2}x + {a^2} - 2}}{{cos2x}}\)
\[ \Leftrightarrow {a^2}co{s^2}x = si{n^2}x + {a^2} - 2\]
\[ \Leftrightarrow {a^2}co{s^2}x = 1 - co{s^2}x + {a^2} - 2\]
\[ \Leftrightarrow ({a^2} + 1)co{s^2}x = {a^2} - 1 \Leftrightarrow co{s^2}x = \frac{{{a^2} - 1}}{{{a^2} + 1}} < 1\]
Vì \[\cos x \ne 0 \Rightarrow 0 < {\cos ^2}x \le 1 \Leftrightarrow {\cos ^2}x >0 \Leftrightarrow {a^2} - 1 >0 \Rightarrow \left| a \right| >1\]
Đáp án cần chọn là: B
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:
Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:
Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \] có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:
Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]
Phương trình \[\sqrt 3 \sin 2x - \cos 2x + 1 = 0\] có nghiệm là:
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là: