Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
A.\[x = \pm \frac{\pi }{3} + k2\pi ;\,\,x = \frac{{2\pi }}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
B. \[x = \frac{\pi }{4} + k\pi ;\,\,x = \frac{\pi }{6} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
C. \[x = k\pi ;\,\,x = \frac{\pi }{3} + k2\pi ;\,\,x = \frac{{2\pi }}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
D. \[x = \frac{\pi }{2} + k\pi ;\,\,x = \frac{\pi }{6} + \frac{{k\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\]
\[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\]
\[ \Leftrightarrow \sqrt 3 sin3x - 2si{n^2}x = \sqrt 3 (sin3x - sinx)\]
\[ \Leftrightarrow \sqrt 3 sin3x - 2si{n^2}x = \sqrt 3 sin3x - \sqrt 3 sinx\]
\[ \Leftrightarrow 2si{n^2}x - \sqrt 3 sinx = 0\]
\[ \Leftrightarrow sinx(2sinx - \sqrt 3 ) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = \frac{{\sqrt 3 }}{2}}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
Vậy nghiệm của phương trình đã cho là:
\[x = k\pi ;\,\,x = \frac{\pi }{3} + k2\pi ;\,\,x = \frac{{2\pi }}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: C
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:
Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \] có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:
Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]
Phương trình \[\sqrt 3 \sin 2x - \cos 2x + 1 = 0\] có nghiệm là:
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là: