Hàm số \[y = {2^{\ln x + {x^2}}}\] có đạo hàm là
A.\[\left( {\frac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}\]
B. \[\left( {\frac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}.\ln 2\]
C. \[\frac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\]
D. \[\left( {\frac{1}{x} + 2x} \right)\frac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\]
Đáp án cần chọn là: B
Cho hàm số \[f\left( x \right) = {2^x}{.7^{{x^2}}}\]. Khẳng định nào sau đây là khẳng định sai?
Tìm tất cả các giá trị thực của m để hàm số \[y = {2^{{x^3} - {x^2} + mx + 1}}\] đồng biến trên (1;2)
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Tính đạo hàm của hàm số \[y = f\left( x \right) = {x^\pi }.{\pi ^x}\] tại điểm x=1.