Gọi m,M lần lượt là GTNN, GTLN của hàm số \[y = {e^{2 - 3x}}\] trên đoạn \[\left[ {0;2} \right].\]Mệnh đề nào sau đây đúng?
A.\[m + M = 1\]
B. \[M - m = e\]
C. \[M.m = \frac{1}{{{e^2}}}\]
D. \[\frac{M}{m} = {e^2}\]
Ta có:\[f'\left( x \right) = - 3{e^{2 - 3x}} < 0,\forall x \in R\]
Do đó hàm số f(x) lên tục và nghịch biến trên \[\left[ {0;2} \right]\]
Do đó\[m = \mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{1}{{{e^4}}};M = \mathop {\max }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 0 \right) = {e^2} \Rightarrow M.m = \frac{1}{{{e^2}}}\]
Đáp án cần chọn là: C
</>
Cho hàm số \[f\left( x \right) = {2^x}{.7^{{x^2}}}\]. Khẳng định nào sau đây là khẳng định sai?
Tìm tất cả các giá trị thực của m để hàm số \[y = {2^{{x^3} - {x^2} + mx + 1}}\] đồng biến trên (1;2)
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Tính đạo hàm của hàm số \[y = f\left( x \right) = {x^\pi }.{\pi ^x}\] tại điểm x=1.