Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 92

Cho các số dương x,y thỏa mãn \[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{7}{y} + \frac{{{x^3}}}{7}\] có dạng \(\frac{a}{b}\). Tính a−b.

Trả lời:

verified Giải bởi qa.haylamdo.com

Bước 1: Sử dụng hàm đặc trưng, tìm biểu diễn \[{x^3}\] theo y.

Ta có\[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {2^{{x^3} + 2x + 2 - 2x - y - 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}}\\{ \Leftrightarrow \frac{{{2^{{x^3} + 2x + 2}}}}{{{2^{2x + y}}.2}} = \frac{{2x + y}}{{2\left( {{x^3} + 2x + 2} \right)}}}\\{ \Leftrightarrow {2^{{x^3} + 2x + 2}}\left( {{x^3} + 2x + 2} \right) = {2^{2x + y}}.\left( {2x + y} \right)\,\,\,\left( * \right)}\end{array}\]

Xét \[f\left( t \right) = {2^t}.t,\,\,t > 0\]ta có\[f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0;\,\,\forall t > 0\].Do đó hàm số f(t) đồng biến trên \[\left( {0; + \infty } \right)\]Do đó \[\left( * \right) \Leftrightarrow {x^3} + 2x + 2 = 2x + y \Rightarrow {x^3} = y - 2\]Bước 2: Thế vào biểu thức P, sử dụng BĐT Cô-si tìm GTNN của biểu thức P.

Khi đó

\[P = \frac{7}{y} + \frac{{{x^3}}}{7} = \frac{7}{y} + \frac{{y - 2}}{7} = \frac{7}{y} + \frac{y}{7} - \frac{2}{7} \ge 2\sqrt {\frac{7}{y}.\frac{y}{7}} - \frac{2}{7} = \frac{{12}}{7}\]

Dấu “=” xảy ra \[ \Leftrightarrow \frac{7}{y} = \frac{y}{7} \Leftrightarrow y = 7\,\,\left( {do\,\,y > 0} \right)\]

\[{P_{\min }} = \frac{{12}}{7} \Leftrightarrow x = \sqrt[3]{5},\,\,y = 7\]

Vậy\[a = 12,b = 7 = > a - b = 5\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:

Xem đáp án » 05/07/2022 200

Câu 2:

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\]có nghiệm dương?

Xem đáp án » 05/07/2022 190

Câu 3:

Cho hàm số y=f(x) có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sauBiết f(0)=76, giá trị lớn nhất của mm để phương trình  (ảnh 1)

Biết f(0)=76, giá trị lớn nhất của mm để phương trình \[{e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\] có nghiệm trên đoạn \[\left[ {0;2} \right]\;\]là

Xem đáp án » 05/07/2022 183

Câu 4:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 05/07/2022 152

Câu 5:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 05/07/2022 142

Câu 6:

Tìm nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}.\]

Xem đáp án » 05/07/2022 141

Câu 7:

Giải phương trình \[{4^x} = {8^{x - 1}}\]

Xem đáp án » 05/07/2022 138

Câu 8:

Biết phương trình \[{9^x} - {2^{x + \frac{1}{2}}} = {2^{x + \frac{3}{2}}} - {3^{2x - 1}}\]có nghiệm là a. Tính giá trị của biểu thức \[P = a + \frac{1}{2}lo{g_{\frac{9}{2}}}2\;\].

Xem đáp án » 05/07/2022 137

Câu 9:

Tìm nghiệm của phương trình \[{9^{\sqrt {x - 1} }} = {e^{\ln 81}}\]

Xem đáp án » 05/07/2022 135

Câu 10:

Tìm giá trị của a để phương trình \[{(2 + \sqrt 3 )^x} + (1 - a){(2 - \sqrt 3 )^x} - 4 = 0\;\]có 2 nghiệm phân biệt thỏa mãn:\[{x_1} - {x_2} = lo{g_{2 + \sqrt 3 }}3\], ta có a thuộc khoảng:

Xem đáp án » 05/07/2022 134

Câu 11:

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Xem đáp án » 05/07/2022 131

Câu 12:

Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất \[1 + \left[ {2{x^2} - m\left( {m + 1} \right)x - 2} \right]{.2^{1 + mx - {x^2}}} = \left( {{x^2} - mx - 1} \right){.2^{mx\left( {1 - m} \right)}} + {x^2} - {m^2}x\].

Xem đáp án » 05/07/2022 128

Câu 13:

Tìm tập nghiệm S của phương trình: \[{4^{x + 1}} + {4^{x - 1}} = 272\]

Xem đáp án » 05/07/2022 127

Câu 14:

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

Xem đáp án » 05/07/2022 126

Câu 15:

Tìm m để phương trình \[{4^x} - \;{2^{x\; + \;3}} + \;3\; = \;m\;\] có đúng 2 nghiệm \[x \in \left( {1;3} \right)\;\].

Xem đáp án » 05/07/2022 125

Câu hỏi mới nhất

Xem thêm »
Xem thêm »