Cho a,ba,b là các số thực dương, thỏa mãn \[{a^{\frac{3}{4}}} > {a^{\frac{4}{5}}}\] và \[lo{g_b}\frac{1}{2} < lo{g_b}\frac{2}{3}\]. Mệnh đề nào dưới đây đúng?
A.a>1,0<b<1
B.0<a<1,0<b<1
C.0<a<1,b>1
D.a>1,b>1
Ta có
\[\frac{3}{4} < \frac{4}{5}\] và \[{a^{\frac{3}{4}}} > {a^{\frac{4}{5}}} \Rightarrow 0 < a < 1\]
\[\frac{1}{2} < \frac{2}{3}\] và \[{\log _b}\frac{1}{2} < {\log _b}\frac{2}{3} \Rightarrow b > 1\]</>
Đáp án cần chọn là: C
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Cho \[0 < x < 1;0 < a;b;c \ne 1\]và \[lo{g_c}x > 0 > lo{g_b}x > lo{g_a}x\;\] so sánh a;b;ca;b;c ta được kết quả:
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?
Cho số thực xx thỏa mãn \[lo{g_2}\left( {lo{g_8}x} \right) = lo{g_8}\left( {lo{g_2}x} \right).\] Tính giá trị của \[P = {(lo{g_2}x)^2}\]
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]
Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng: