Đặt \[{\log _2}60 = a;{\log _5}15 = b.\]. Tính \[P = lo{g_2}12\] theo a và b.
A.\[P = \frac{{ab + 2a + 2}}{b}\]
B. \[P = \frac{{ab - a + 2}}{b}\]
C.\[P = \frac{{ab + a - 2}}{b}\]
D. \[P = \frac{{ab - a - 2}}{b}\]
\[a = lo{g_2}60 = lo{g_2}({2^2}.15) = 2 + lo{g_2}15 \Rightarrow lo{g_2}15 = a - 2\]
\[ \Rightarrow lo{g_2}5 = \frac{{lo{g_{15}}5}}{{lo{g_{15}}2}} = \frac{{lo{g_2}15}}{{lo{g_5}15}} = \frac{{a - 2}}{b}\]
\[b = lo{g_5}15 = lo{g_5}(3.5) = 1 + lo{g_5}3 \Rightarrow lo{g_5}3 = b - 1\]
\[lo{g_2}3 = lo{g_2}5.lo{g_5}3 = \frac{{a - 2}}{b}.(b - 1) = \frac{{ab - 2b - a + 2}}{b}\]
\[lo{g_2}12 = lo{g_2}({2^2}.3) = 2 + lo{g_2}3 = \frac{{ab - a + 2}}{b}\]
Đáp án cần chọn là: B
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[0 < x < 1;0 < a;b;c \ne 1\]và \[lo{g_c}x > 0 > lo{g_b}x > lo{g_a}x\;\] so sánh a;b;ca;b;c ta được kết quả:
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?
Cho số thực xx thỏa mãn \[lo{g_2}\left( {lo{g_8}x} \right) = lo{g_8}\left( {lo{g_2}x} \right).\] Tính giá trị của \[P = {(lo{g_2}x)^2}\]
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]
Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng: