Cho \[\log x = a\] và ln10=b . Tính \[lo{g_{10e}}x\] theo a và b
A.\[\frac{{2ab}}{{1 + b}}\]
B. \[\frac{{ab}}{{1 + b}}\]
C. \[\frac{a}{{1 + b}}\]
D. \[\frac{b}{{1 + b}}\]
Ta có:
\[{\log _{10e}}x = \frac{1}{{{{\log }_x}10e}} = \frac{1}{{{{\log }_x}e + {{\log }_x}10}} = \frac{1}{{\frac{{\ln e}}{{\ln x}} + \frac{{\ln 10}}{{\ln x}}}} = \frac{{\ln x}}{{1 + \ln 10}} = \frac{{\ln 10.\log x}}{{1 + \ln 10}}\]
Suy ra\[{\log _{10e}}x = \frac{{ab}}{{1 + b}}\]
Đáp án cần chọn là: B
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[0 < x < 1;0 < a;b;c \ne 1\]và \[lo{g_c}x > 0 > lo{g_b}x > lo{g_a}x\;\] so sánh a;b;ca;b;c ta được kết quả:
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?
Cho số thực xx thỏa mãn \[lo{g_2}\left( {lo{g_8}x} \right) = lo{g_8}\left( {lo{g_2}x} \right).\] Tính giá trị của \[P = {(lo{g_2}x)^2}\]
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]
Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng: