Cho a,b là các số dương thỏa mãn \[{a^2} + 4{b^2} = 12ab\]. Chọn khẳng định đúng trong các khẳng định sau:
A.\[\ln \left( {a + 2b} \right) - 2\ln 2 = \ln a + \ln b\]
B. \[\ln \left( {a + 2b} \right) = \frac{1}{2}(\ln a + \ln b)\]
C. \[\ln \left( {a + 2b} \right) - 2\ln 2 = \frac{1}{2}(\ln a + \ln b)\]
D. \[\ln \left( {a + 2b} \right) + 2\ln 2 = \frac{1}{2}(\ln a + \ln b)\]
\[{a^2} + 4{b^2} = 12ab \Leftrightarrow {(a + 2b)^2} - 4ab = 12ab \Leftrightarrow {(a + 2b)^2} = 16ab\]
\[ \Rightarrow ln{(a + 2b)^2} = ln(16ab)\]
\[ \Rightarrow 2ln(a + 2b) = ln16 + lna + lnb\]
\[ \Rightarrow 2ln(a + 2b) - 4ln2 = lna + lnb\]
\[ \Rightarrow ln(a + 2b) - 2ln2 = \frac{1}{2}(lna + lnb)\]
Đáp án cần chọn là: C
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[0 < x < 1;0 < a;b;c \ne 1\]và \[lo{g_c}x > 0 > lo{g_b}x > lo{g_a}x\;\] so sánh a;b;ca;b;c ta được kết quả:
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?
Cho số thực xx thỏa mãn \[lo{g_2}\left( {lo{g_8}x} \right) = lo{g_8}\left( {lo{g_2}x} \right).\] Tính giá trị của \[P = {(lo{g_2}x)^2}\]
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]