Trong không gian Oxyz cho các điểm A(1;−1;0), B(−1;0;2), D(−2;1;1), A′(0;0;0). Thể tích khối hộp ABCD.A′B′C′D′ là:
A.4
B.2
C.1
D.\(\frac{1}{6}\)
Ta có:\[\overrightarrow {AB} = \left( { - 2;1;2} \right),\overrightarrow {AD} = \left( { - 3;2;1} \right),\overrightarrow {AA'} = \left( { - 1;1;0} \right)\]
Suy ra
\[\begin{array}{*{20}{l}}{\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}1\\2\end{array}}&{\begin{array}{*{20}{l}}2\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}2\\1\end{array}}&{\begin{array}{*{20}{l}}{ - 2}\\{ - 3}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{ - 2}\\{ - 3}\end{array}}&{\begin{array}{*{20}{l}}1\\2\end{array}}\end{array}} \right|} \right) = \left( { - 3; - 4; - 1} \right)}\\{ \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} = \left( { - 3} \right).\left( { - 1} \right) + \left( { - 4} \right).1 + \left( { - 1} \right).0 = - 1}\end{array}\]
Khi đó: \[{V_{ABCD.A'B'C'D'}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right| = \left| { - 1} \right| = 1\]
Đáp án cần chọn là: C
Trong không gian với hệ trục tọa độ Oxyz, véctơ nào dưới đây vuông góc với cả hai véctơ \[\overrightarrow u = \left( { - 1;0;2} \right),\overrightarrow v = \left( {4;0; - 1} \right)\]?
Cho hai véc tơ \[\overrightarrow {{u_1}} = \left( {{x_1};{y_1};{z_1}} \right)\]và \[\overrightarrow {{u_2}} = \left( {{x_2};{y_2};{z_2}} \right)\]. Kí hiệu \[\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right],\]khi đó:
Trong không gian Oxyz, cho hai điểm A(1;0;2), B(2;−1;3). Số điểm M thuộc trục Oy sao cho tam giác MAB có diện tích bằng \(\frac{{\sqrt 6 }}{4}\)là:
Tính tích có hướng của hai véc tơ \[\vec u\left( {0;1; - 1} \right),\vec v\left( {1; - 1; - 1} \right)\]
Trong không gian tọa độ Oxyz, tính thể tích khối tứ diện OBCD biết B(2;0;0),C(0;1;0),D(0;0;−3).
Điều kiện để hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \] cùng phương là:
Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]khác \(\overrightarrow 0 \)cùng phương. Điều kiện nào sau đây “không” đúng?
Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]khi đó:
Sin của góc giữa hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]là:
Diện tích hình bình hành ABCD có các điểm A(1;0;0),B(0;1;2),C(−1;0;0) là:
Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]chọn kết luận sai:
Cho ba véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \]thỏa mãn \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}} = 0\]. Khi đó ba véc tơ đó: