x8+x7+1=x8−x2+x7−x+x2+x+1=x2x6−1+xx6−1+x2+x+1=xx+1x6−1+x2+x+1=xx+1x3−1x3+1+x2+x+1=xx+1x−1x3+1x2+x+1+x2+x+1=x2+x+1xx+1x−1x3+1+1
Chứng minh: n2n+1+2nn+1 luôn chia hết cho 6 với mọi n∈ℤ
Tìm x biết: x3+x=0
Tìm x biết: x3−4x=0
Chứng minh: x2+y2+1−2xy>0
Tìm x biết: x23x−2−8+12x=0
Tìm x biết: x2−10x=−25
3) Tính số đo các góc của ΔDMN.
2) Chứng minh: ΔAMD=ΔBND.
Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh: AM = BN.
3) Tổng độ dài (DM + DN) không đổi.
Cho hình thoi ABCD có A^=60°. Một góc xBy thay đổi sao cho tia Bx cắt cạnh AD tại M, tia By cắt cạnh CD tại N và xBy^=60°. Chứng minh :
1) AB = BD.
2) Gọi O là giao điểm của AC và BD. Chứng minh: OA2=34AB2.
Cho hình thoi ABCD có AB = BD.
1) Chứng minh: Tam giác ABD đều.