Diện tích của hình thoi ABCD là S = AC.BD
Gọi O là giao điểm của AC và BD
⇒ S = 2OA.OB
Từ giả thiết ta có hình thoi ABCD có Aˆ = 600 nên Δ ABD đều
Do đó Δ ABO là nửa tam giác đều có BO = BD = = 3( cm ).
Áo dụng định lí Py – to – go ta có:
AB2 = AO2 + BO2 ⇒ AO = √ (AB2 - BO2) = √ (62 - 32) = 3√ 3 ( cm )
Khi đó ta có: S = 2OA.OB = 2.3√ 3 .3 = 18√ 3 ( cm2 )
Vậy diện tích hình thoi là 18√ 3 ( cm2 )
Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng:
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
A. Hình vuông là đa giác đều.
B. Tổng các góc của đa giác lồi 8 cạnh là 10800.
C. Hình thoi là đa giác đều.
D. Số đo góc của hình bát giác đều là 135,50.
Chứng minh rằng với S là diện tích của tam giác có độ dài hai cạnh là a,b ?
Trung tuyến AD và BE của Δ ABC cắt nhau tại G. Chứng minh rằng:
SDEG = SCEG = SCED = SABG = SABE = SABC.