b) Gọi O = AC BD => O là trung điểm của AC và BD. Chứng minh EBGD và BFDH là hình bình hành suy ra AC, BD,EG, FH đồng quy tại trung điểm mỗi đường (điểm O).
Cho hình chữ nhật ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
a) EFGH là hình gì? Vì sao?
Cho tam giác ABC cân tại A, trung tuyến AM. Qua M kẻ đường thẳng song song với AC cắt AB tại P và đường thẳng song song với AB cắt AC tại Q.
a) Tứ giác APMQ là hình gì? Vì sao?
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
a) Chứng minh E và F đối xứng với nhau qua AB.
Cho tam giác ABC nhọn, các đường cao BD, CE. Tia phân giác của các góc và cắt nhau tại O, và lần lượt cắt AC, AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H: Chứng minh rằng:
a) BN CM;
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.